The X Keyboard Extension:
Library Specification

Library Version 1.0 / Document Revision 1.0
X Consortium Standard

X Version 11, Release 6.1

Amber J. Benson and Gary Aitken

Erik Fortune
Silicon Graphics, Inc.

Donna Converse
X Consortium Inc.

George Sachs
Hewlett-Packard Company

Will Walker
Digital Equipment Corporation

Copyright © 1995, 1996 X Consortium Inc.

Copyright © 1995, 1996 Silicon Graphics Inc.
Copyright © 1995, 1996 Hewlett-Packard Company
Copyright © 1995, 1996 Digital Equipment Corporation

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the “Software”), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do
S0, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substan-
tial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGE-
MENT. IN NO EVENT SHALL THE X CONSORTIUM BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT
OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the names of the X Consortium, Silicon Graphics Inc.,
Hewlett-Packard Company, and Digital Equipment Corporation shall not be used in advertising or
otherwise to promote the sale, use or other dealings in this Software without prior written authori-
zation.

Acknowledgments

This document is the result of a great deal of hard work by a great many people. Without Erik For-
tune’s work as Architect of the X Keyboard Extension and the longtime support of Silicon Graph-
ics Inc. there would not be a keyboard extension.

We gratefully thank Will Walker and George Sachs for their help and expertise in providing some
of the content for this document, and Digital Equipment Corporation and Hewlett-Packard for
allowing them to participate in this project, and we are deeply indebted to IBM for providing the
funding to complete this library specification.

Most of all, we thank Gary Aitken and Amber J. Benson for their long hours and late nights as
ultimate authors of this specification, and for serving as authors, document editors, and XKB pro-
tocol and implementation reviewers. Their commitment to accuracy and completeness, their
attention to detail, their keen insight, and their good natures when working under tremendous
pressure are in some measure responsible not only for the quality of this document, but for the
quality of the Keyboard extension itself.

Matt Landau

Manager, X Window System
X Consortium Inc.

5 February 1996

The X Keyboard Extension

The following table shows the font conventions used in this document:

Usage Font example

Key Labels Num_Lock

New terms SlowKeys acceptance delay

Function definitions XkbColorPXkbAddGeomColor(geomspegpixel)
Function references XkbAddGeomColor

Parameters or arguments geom

Structure definitions XkbGeometryRec

Structure references XkbGeometryRec

References to fields in a data structurekey_aliases
References to masks, modifiers, controlignoreGroupLock

February 5, 1996 Library Version 1.0/Document Revision 1.0

The X Keyboard Extension

1 OVEBIVIBW ...ttt e e ettt e e e e et e e e e e e e e et e e e e e e esaa e eeeeeeataaaeeeeeesaaaaeeeenenes 1
1.1 Core X Protocol Support for KEybBoards ... 1
1.2 Xkb Keyboard Extension Support for Keyboards.............cccuuiiiiiiiiiiiiiceeeees 1
1.3 XKD EXIENSION COMPONENTS ...cciiiitiiiieeiititee e ettt ee e e sttt e e e sttt e e e s sbbe e e e s sbbe e e e e s sbreeeeesanbnreeesann 1
1.3.1 Groups and Shift LEVEIS......c.uuiiiiiiiiieee e 3
S T ¥ Vo [(ol €] o 10 o 1 SO T PP PP PP PPPRPPPPP 3
1.4 L@ 1= o A 7] 1= O 3.
15 Compatibility with the Core ProtoCOl ...t 4
1.6 Additional ProtoCOl EITOIScooieiiiiiieieeeie et e e e e e e e s e 4.
1.7 EXtension LIbrary FUNCHONSociiiii i s e e e e e e e e e s e ennnnnes 4
O 0 R = o T gl [o 1o LT LS PP 4
2 Initialization and General Programming Information..............ccccevviiiiiiiiinieeee e, 6
21 EXteNSION Header FIleS.........uuuiiiiiiiiiee et ane Buee..
2.2 EXLENSION NAME ..ottt snnree e e s nnnnnee e 6........
2.3 Determining Library CompatibDilityeeooiiiiiiiiiiii e 6
2.4 Initializing the Keyboard EXIENSION..........ccoiiiiieriiiiie ettt 7
25 Disabling the Keyboard EXtENSION..........uuuuiiiiiieeiiiiiiiiieiee et e e e e e e ennnneeeeees 8
2.6 L o] (o ol]l = 4 (o] (=TT P PP PUPPPPP 9.
2.7 Display and Device Specifications in Function CallSccoceeiiiiiiiiiniieeeee e, 9
3 DaAta STIUCTUINES ...t e e et e e e e e e e et e e e et e e e eaneeeees 11
3.1 Allocating XKD Data SITUCIUIESuvvviiiiiiiiiie e e a e e e e e e e 11
3.2 Adding Data and Editing Data SIHUCIUIESevieiiiiiiiieiiieieee i 11
3.3 Making Changes to the Server’s Keyboard DescCription..........ccccccvvveeeeiiiivcciiniieineeeee e, 12
3.4 Tracking Keyboard Changes in the SEIrVEr ... 12
3.5 Freeing Data SITUCLUIESeviiiiiiiee ettt 13,
4 XKD EVENESot e e e e e e e e e e e ettt e e e e e e aaaaeaaaes 14
4.1 XKD EVENE TYPES ..ttt e et e e e e e e e e e e e 14.......
4.2 XKD EVENE DAL STIUCLUIESeeeieeiieieee ittt e ettt e et e e e e e e s s et eeeeaaaeeeeesannnnnes 15
4.3 Selecting XKD EVENLScooviiiiiii e s e e e e e e e e e s e nnnnes 5.
A.3. 1 EVENEIMASKS. ..ottt 17
4.4 UNified XKD EVENE TYPE ...ttt e e e e e e e e e e e e s e e nanees 18
5 ()Y 0 To = U0 IR = (PRSP 19
5.1 Keyboard State DESCHPLIONoiiiiiiiiiee ittt et e s nreeas 19
5.2 Changing the Keyboard State...............ueiiiiiiiiiiii e 22
5,21 Changing MOGIfIEIScccoeiiii e e e e e e e e e e e e e e e aeananes 22
5.2.2 ChangiNg GrOUPSuuuutieieiiieaeaaeiaaittt ettt e e e e e e e e st e et e e e e e e s s s aanbbebreeeeaaaeeeaaaaans 23
5.3 Determining Keyboard STAte.........cooiiiiiiiiiiiiiieee e 23
5.4 Tracking Keyboard State...........coiiiiiiiiiiiiiii e 24
6 Complete Keyboard DeSCIPLION.ccuvuiiiiiiiiiiaiae et e e 27
6.1 The XKDDESCREC SIUCIUIEccoiii ittt e e e e e e e e e s s neebeneees 27
6.2 Obtaining a Keyboard Description from the Server.........cccccvvviiiiiieieieee e, 28
6.3 Tracking Changes to the Keyboard Description in the Server...........ccccccceeiiiiiiiniiiinnee 28
6.4 Allocating and Freeing a Keyboard DeSCriPtiON............ocuiiiiiiiiiiiieniiiiiee e 28
7 Virtual MOIFIEIS ...t e e e as 30
7.1 Virtual Modifier Names and MaSKScooiiiiiiiiiiie e 30

February 5, 1996

Library Version 1.0/Document Revision 1.0

The X Keyboard Extension

7.2 Modifier DEfINITIONSveiiiiiiiii e e s 30........
7.3 Binding Virtual Modifiers to Real MOdIfiers ... 31
7.4 Virtual Modifier KEY MapPing.......cceeiiiiiiiiiiiieie e s s st e e e e e e e e s s s snenrneereeaeeeeesanannns 31
7.4.1 INACtiVe MOIfIEr SELS...ccciiiiiiie i 32
7.5 1070] 01 V7=T o1 1 o] o T PP PP PP PR PR 32...
7.6 EXAMIPIE e an e ¢ s— 32.
8 1o [Tox= 1 (0] =SSR 34
8.1 INAICALOr NAMES ...ttt e e e e e e s st e e e e e e ...
8.2 INdiCator Data STTUCIUIES.........vvveiiiiiiiicce e e e e e e e e e e e 4.
8.2.1 XKBINAICALOIREC .. .uuuiiiiie i e e e e e e e e e e e e e e e e eeaeaeaaanes 34
8.2.2 XKDBINAICAIOIMEAPREC.....cciiiiiiiiee it 35
8.3 Getting Information ADOUL INAICALOIS.......cuvviiiiiiiiiie e 39
8.3.1 Getting INICALOr SEALEccciiiuiiiiieiiiiiiee e 40
8.3.2 Getting Indicator Information by INAEX........cc.eeveriiiiiiiiiiii e, 40
8.3.3 Getting Indicator Information by Nameccccoouiiiiiiiiiiiii e 40
8.4 Changing Indicator Maps and Statecoeiieiiiiiiiiiiiiie e 41
8.4.1 Effects of Explicit Changes on INdIiCAtOrsSoooviiiiiiiiieiiiieeieiiieeeeeee 41
8.4.2 Changing Indicator Maps by INdeX.........cccuuiiiiiiiiiiiii e 42
8.4.3 Changing Indicator Maps by Nameueiiiiiiii e 43
8.4.4 The XkbIndicatorChangesSReC SIrUCLUIeoovvviiiviiriiiricire e 43
8.5 Tracking Changes To Indicator State OF Map.......ccuuiieeiiiiiiiiiiiiiieeee e 44
8.6 Allocating and Freeing INdiCator MapS........uvveeeeii i e e 45
9 BIIS . e 47
9.1 BEIINAMES ...t a e e e e e e e e e e A
9.2 AUAIDIE BEIIS.... et 48..
9.3 Bell FUNCLIONS ...ttt e e e e e e e e aes A8...
9.3.1 Generating Named BellS...........uuuuuiiiiiii e 49
9.3.2 Generating Named Bell EVENLS...........uuiiiiiiiiic e 50
9.3.3 Forcing a Server-generated Bell ... 51
9.4 DeteCting BelIScooiiiieeeeii e 51..
10 ()] 0 To = U e IO o]] 1 £0] 1S 53
10.1 Controls that Enable and Disable other Controls ... 54
10.1.1 The EnabledControls CONtrolc..uueiiiiiiiiiiiiiieee e 54
10.1.2 The AUtORESEt CONLIOleiiiiiiiiiiiie e 54
10.2 Control for Bell BENAVIOLuuiiiiiiii e B6........
10.2.1 The AudibleBEll CONIOL..........coeviiiiiiiicccce e 56
10.3 Controls for Repeat Key BENAVIONuviiiiiiieeeiiiicciiii e e e 56
10.3.1 The PerKeyRepeat CONIOl.......cc.uuuiiiiiiiieee it e e e e e e e e s s sreree e e e e e e e e e e e ennneees 56
10.3.2 The RepeatKeys CONLIOL.........cccuuiiiiiiiiiee e e e e e e e e e s e ennnenes 56
10.3.3 The DetectableAutorepeat CONtrol...........ccccuvviiiiiiieee e 57
104 Controls for Keyboard Overlays (Overlayl and Overlay2 Controls)ccccoevvveeens 58
10.5 Controls for Using the Mouse from the Keyboard.............cccccoeiiiiiiiiiiiie e, 59
10.5.1 The MOUSEKEYS CONLIOL.......ceiiiiiiiieeiiiiiie ettt 59
10.5.2 The MouseKeySACCEl CONIOL........oocuuiiiiiiiiiiiie et 59
10.6 Controls for Better Keyboard Access by Physically-Impaired Persons...............ccccccee.... 61
10.6.1 The AcCCeSSXKEYS CONMIOL.......uuuiiiiiiiiiieeeieiiiceiieeee e e e e e e e s se e e e e e e e e nnenneees 61
10.6.2 The AccesSXTIMEOUL CONIOIciiiiiiiiieiiiiiiie et 62
10.6.3 The AccessXFeedback CONLIOL..........ccuueiiiiiiiiiiiiiiiii e 63
10.6.4 ACCESSXNOLIfY EVENIS ...cccciiiiiiciieee et r e e e e e e s 64
February 5, 1996 Library Version 1.0/Document Revision 1.0 TOC-2

The X Keyboard Extension

11

12

13

10.6.5 StickyKeys, RepeatKeys, and MouseKeys EVENLS...........ceevevieeiiiiiniiiiiiiiieeeeeenn. 65
10.6.6 The SIOWKEYS CONLIOL........ccoo i e e e e e e e e e e e e e e e e aeaaaaeees 65
10.6.7 The BouNCEKEYS CONLIOL.......ccceeveiiiiiiiiiiiiiieeie 66
10.6.8 The StickyKeys CONMIOL.........uuuuuuiiiii i 67
10.7 Controls for General Keyboard Mapping..........ceeeiiiiiieiiiiiiieeeeiiieeee et 68
10.7.1 The GroupsSWrap CONLIOL..........ccooiiiiiiiiiiiiiiei et 69
10.7.2 The IgNoreLoCKMOdS CONIOLcuuiiiiiiiiiie et 69
10.7.3 The IgnoreGroupLock CONLIOlc.uviiiiiiiiiiiee e 70
10.7.4 The InternalMods CONrol............uuuiiiiiiiiie e 70
10.8 The XKDCONLIOISREC SIIUCIUIEveiiiiiiieiee ettt 71
10.9 L@ 1811 oY1 o [0o 11 0] LS 16......
10.10 Changing CONLIOIS..........cceiiiiiiieeiiiiiie ettt e ebbe e e e e 17.....
10.10.1 The XkbControlsChangeSREC STIUCIUIEcccuviieiiiiiiieee e 78
10.11 Tracking Changes to Keyboard ControlSoooccciiiiiiieiieee et 78
10.12 Allocating and Freeing an XKbCONLIOISRECcccoeiiiiiiiiiiieieeee e 80
X LIDFArY CONTIOIS ...ttt e e e e e e e e e e e e 81
11.1 Controls Affecting Keycode-to-String Translation ..., 81
I O R o o7 = 4 4 o o (o PP 81
11.1.2 CoNSUMELOOKUPMOUSccceiiiiiiiiiieieee e e e e e e e s et e e e e e e e s e s s e e e e e e e e e e e nnnnes 81
11.1.3 AlwaysConsumeShiftANALOCKccoiiiiiiiiiiiiiie e 82
11.2 Controls Affecting COmMPOSE PrOCESSING ...ccviiieeiiiiiiiiieiiieite et 82
11.2.1 ConsumeKeysONCOmMPOSEFaIl........coooiiiiiiiiiiiiiiiie e 82
11.2.2 COMPOSELED..... .. 83
11.2.3 BeepOnComMPOSERAIl........ooiiiiiiieeee e 83
11.3 Controls Effecting EVENE DEIVETYoeiiiiiiiiiii et 83
11.3.1 IgnoreNewKeyboardsccuuuiieiiiiiieee e 83
11.4 Manipulating the Library CONrolS.........coocuuiiiiiiiiiiie e 84
11.4.1 Determining which Library Controls are Implemented..............ccccccevveeeniniinnns 84
11.4.2 Determining the State of the Library Controlscccccvvvveveeiiiiiiiieeeee e, 84
11.4.3 Changing the State of the Library CONntrolS..........ccoceviiiiiiiiie e 84
Interpreting KeY EVENTS ... e s 86
12.1 Effects of Xkb on the Core X LiDrary ... 86
12.1.1 Effects of Xkb 0N EVENE STALE.......uuiiiiiiiieeiiiiiiieeeee e 86
12.1.2 Effects of Xkb on MappingNotify EVENLScceiiiiiiiiiiiiiiiiiiiieeeeeee e 86
12.1.3 X Library Functions Affected by XKD ... 87
12.2 Xkb Event and Keymap FUNCHONS.ciiiieiiiiiciieie e e e e e e e e eeeeaae s 88
KeyDOard GEOMETIY ... oottt e e e e e e e e e e e e e e eeeeeenannes 91
13.1 Shapes and OULIINEScoiuriiiiiiii e 93........
13.2 1=t 1o PSP PPPP RS 94
13.3 ROWS QN0 KBYSot e e e e e e et e s e e e e e eaan 94......
134 Do oo F=To T TR U TR PTRPRPT 95
135 Overlay ROWS and OVENAY KEYSuuiiiiiieeeiiiiiciiieee et e s s er e e e e e e e e e snnnanrananeeeaaae s 95
13.6 Drawing a Keyboard RepreSentationooouuiiiiiiiiieiee e 96
13.7 Geometry Data STIUCLUIESoooiiiiiireeie et e e 97
13.8 Getting Keyboard Geometry From the SErver.......ccccuviieiieeee e 103
13.9 (O] [aTo l =3 Y/ o Jo = Ue T =T o =] i o 104
13.10 Adding Elements to a Keyboard GEOMELrYooeiiiiiiiiiiiiiiiee e 105
13.11 Allocating and Freeing Geometry COMPONENTS.......cccceviiiiiiiiiiiiereeee e e e e sssneereenrrereeeeeenenas 109

February 5, 1996

Library Version 1.0/Document Revision 1.0

TOC-3

The X Keyboard Extension

14

15

16

XKkb Keyboard Mappingooeeeeeiiiiiiiiiiiiiee e eeeee e s e e e e e e e e e e e eeeaennenne 115
14.1 Notation and TEIMINOIOQY.....uuuuiiiieee i e e e e e e e e s e e eraeaeeeseeanans 115
14.1.1 Core Implementationccccuuriieiierieee e e e e s e e e e e e e e e e ennnne 116
14.1.2 XKb IMplementationcccuiiiiiiiiiee e e e 116
14.2 Getting Map Components from the SEIVET ... 117
14.3 Changing Map Components in the SEIVET ..o 119
14.3.1 The XkbMapChangesReC StrUCIUIEoccuiieeiiiiiiieeiiiiee e 119
14.4 Tracking Changes to Map COMPONENTSccoiiiiiiieiiiiiiieeieiiiee e eeriee e e e s 121
14.5 Allocating and Freeing Client and Server Mapsccccuvuvviiiieiieeeniiiieieeee e 122
14.5.1 Allocating an Empty ClHent Mapoooiiiiiiiiiiiiiie e 122
14.5.2 Freeing a CHent Mapoooiiiiiiieeeee e 123
14.5.3 Allocating an EMpty SErver Mapcoooiiiiiieiieeiee e 123
14.5.4 Fre€iNg @ SEIVEE IMAP e ittt ettt e e e e e et eeeeaaeeeeas 124
Xkb Client Keyboard Mapping.......cccceeieeiiiieieeeiiiiiiiiese e e e e e e e e eeeeeeeeeeeeneennn s 125
151 The XKbClentMapREC STIUCIUIEuviiiiiiiiiie et et sereee e 126
15.2 (NS VA Y 01T T PP PP PPRPP 126.
15.2.1 The Canonical KeY TYPEScoiiiiiiiiiiiiiie ettt e e e e e e e e 128
15.2.2 Getting Key Types from the Server ... 130
15.2.3 Changing the Number of Levels in a Key TYpe ... 131
15.2.4 COPYING KBY TYPES. . uttiiiiiiiiae ittt ettt ettt e e e e e e e e s s bbb e eeaaaeaeeaaaans 131
15.3 KEY SYMDBDOI IMAP ..eeeiiiiiiee ettt e e e e e e e s 32....... 1
15.3.1 Per-Key Key TYPE INAICESuuuuiiiiiiieeiie ittt 133
15.3.2 Per-Key Group INfOrmMationuuueiiiiiiiee i e e 133
15.3.3 KEY WILN ceeiiiiiiiie ettt e e st e e e e st e e e e s snraeeaeeaaes 134
15.3.4 Offset in t0 the SYMDOI MaPuuiiiiiiiiiiii e 134
15.3.5 Getting the Symbol Map for Keys from the Server..........cocccvviiiiiniiinns 136
15.3.6 Changing the Number of Groups and Types Bound to a Keyceeeeeeeee 136
15.3.7 Changing the Number of Symbols Bound to a Keyccccceevveeeiiiiiiiiiiiiiieeen. 137
15.4 The Per-Key Modifier MAPcuuviiiieiiieeee et e e e e e e s e s e e e aeeeeeeas 138
15.4.1 Getting the Per-Key Modifier Map from the Server..........cccccovevveeeeiiiivcciinne, 138
Xkb Server Keyboard Mappingoooveiiiiiiiiiiiieeeeeeeeeeeeeeeie e 139
16.1 KEY ACTIONS ...ttt e e st e e e e e e s e 140.
16.1.1 The XKDACLON SEIUCLUIEccoiiiiiiieiieeeee e e e e e e 141
16.1.2 The XKDANYACLON SITUCIUIEeviiiiiiiiiee ettt 142
16.1.3 Actions for Changing Modifiers’ Stateccccceviiiiiiiiiiiiiee e 142
16.1.4 Actions for Changing Group STate...........ccovuriiieiiiiiie e 144
16.1.5 Actions for Moving the POINTENccoiiiiiiiiiiic e 146
16.1.6 Actions for Simulating Pointer Button Press and Release...........cccccccceevininnnes 147
16.1.7 Actions for Changing the Pointer Button Simulatedccccceeiiiiieiennnn, 148
16.1.8 Actions for Locking Modifiers and GrouUp............cccoruuriieriiieeeeiniiiee e 149
16.1.9 Actions for Changing the ACtiVe SCreencccceveiiiiiiiiiiiiie e 152
16.1.10 Actions for Changing Boolean Controls State.............cccccveviiiieiiiiiiiieee i, 153
16.1.11 Actions for Generating MESSAUESuviieiiuriiieriiiie et 154
16.1.12 Actions for Generating a Different Keycode..............ccccceiiiiiiiiiiiiiieeciiiiieeees 155
16.1.13 Actions for Generating DeviceButtonPress and DeviceButtonRelease............ 157
16.1.14 Actions for Simulating Events from Device Valuators.............cccceeeeviiereennnnn. 158
16.1.15 Obtaining Key Actions for Keys from the Serverccccoivveiiiieeeeiineen, 159
16.1.16 Changing the Number of Actions Bound to a Key.........cccocveiviiiiiiiiiiiiineenee, 159
16.2 (S VA = 1= 0 = V7 o PSR 160...
T2 R = - To [[0 T 101U o 1S 160
16.2.2 The XKbBehavior StrUCLUIEocuuiiieiiiiiiee ettt ee e 160

February 5, 1996 Library Version 1.0/Document Revision 1.0 TOC-4

The X Keyboard Extension

16.2.3 Obtaining Key Behaviors for Keys from the Server.............ccccovvvvvvviviivvnvnnnnnnn. 161
16.3 Explicit Components—Avoiding Automatic Remapping by the Server............c.coceee... 162
16.3.1 Obtaining Explicit Components for Keys from the Server..........ccccccovivieeenns 162
16.4 Virtual Modifier MaPPING «...vveveeeeieee e e e e e e e e e e s e s s eereeeeeeeeeannnnns 163
16.4.1 Obtaining Virtual Modifier Bindings from the Server.........cccccccceeviviiicininnnnen, 164
16.4.2 Obtaining Per-Key Virtual Modifier Mappings from the Serverc.......... 165
17 The Xkb Compatibility Mapeuioiiieeeeecceeeee s 166
17.1 The XKDCOMPAIMEAP SITUCTUIEccciiiiiiieiiiiie ettt e e sbneeee e 168
17.1.1 Xkb State to Core Protocol State Transformationcccoceeiiiiininiinnne 168
17.1.2 Core Keyboard Mapping to Xkb Keyboard Mapping Transformation............. 169
17.1.3 Xkb Keyboard Mapping to Core Keyboard Mapping Transformations........... 172
17.2 Getting Compatibility Map Components From the Server.........cccccccvvvciiiniieenieee s 173
17.3 Using the CompatibDility Mapcooiiiiiiiiiie e 174
17.4 Changing the Server’'s Compatibility Map...........occuveiiiiiiiiiieiii e 176
17.5 Tracking Changes to the Compatibility Mapccoooiiiiiiiiiiiiiie e 177
17.6 Allocating and Freeing Compatibility Mapccoiiiiiiiiiiiie e 178
18 SYMDBDONC NAIMES ...ttt et e e e e e e e e e e e e s 179
18.1 The XKDNamMESREC STIUCIUIE........vviiiiie e 179
18.2 SYMDOIC NAMES MASKSeueiiiiii it s e e e e e e e e e e e e aaeeeeeeeeaaanes 181
18.3 Getting Symbolic Names From the SErVer ... 182
18.4 Changing Symbolic Names 0N the SErVer...........oooiiciiieiiiiie e 182
18.5 Tracking Name ChanQESuuuuuiuiuiiiiiie et a e e e aaaaeas 184
18.6 Allocating and Freeing Symbolic NamES..........oeviiiiiiiiiiiiiie e 185
19 Replacing a Keyboard “On the FIy” ..o 186
20 Server Database of Keyboard Components.............oouvuuiiiiiiiiiiinieeeeeeeeeeeceeeiiiiiees 189
20.1 COMPONENT NAMES ...coiiiiiiiiiiie e e e ennrnneed O, 19
20.2 Listing the Known Keyboard COMPONENtS........cccooiiiiiiiiiiiiiiicceee e e e e 190
20.3 COMPONENT HINS....oiiiiiiiiii e e e e e e e e eae e 191......
20.4 Building a Keyboard Description using the Server Database............ccccocceveeiiiiieeennen. 192
21 Attaching Xkb Actions to X Input Extension DevViCesScccceeeeeeevivevieeiiinnnnnns 197
211 XKDDEVICEINTOREC ... ittt e e 98....... 1
21.2 Querying Xkb Features for Non-KeyClass Input Extension DeVices............ccceeeerunen. 199
21.3 Allocating, Initializing, and Freeing the XkbDevicelnfoRec Structure.............ccccee..... 202
21.4 Setting Xkb Features for Non-KeyClass Input Extension DevViCes..........ccccccevveeeeeennnnns 203
21.5 XKbEXtensioNnDeVICENOLITY EVENT........cocuiiiiiiiiiiie et 205
21.6 Tracking Changes to EXtENSION DEVICES........cceuiviiiiiiiiieieieee e s e e e e e e s 206
22 DT 018 o o [T o [N o ES TP SURRPPP 209
GIOSSAIY ..ttt ettt e e e e e e e e e e e e e e e 211

February 5, 1996 Library Version 1.0/Document Revision 1.0 TOC-5

The X Keyboard Extension

Figure 1.1

Figure 5.1

Figure 10.1
Figure 131
Figure 13.2
Figure 13.3
Figure 13.4
Figure 13.5
Figure 13.6
Figure 13.7
Figure 14.1
Figure 15.1
Figure 16.1
Figure 16.2
Figure 17.1
Figure 17.2
Figure 17.3
Figure 20.1

Overall XKD SITUCIUIEccoeeeei e e e e e e e 2
XKD StALE. ... e 19
MouseKeys ACCEIEIatioNoeuvuiuiiiiiiii e e 61
Rotated Keyboard SECHONS...........uviiiiiiiiiiiie e 91
Keyboard with FOUr SECHIONS............coiiiiiiiiie e 93
ROWS IN @ SECLON.....cciiiiiiiiii e 94
Xkb Geometry Data StIUCIUIESuuuuiiiiiiiiiiiiieie e 97
Xkb Geometry Data Structures (Doodads).........cccceevveiiiiiiiiieeeiiiiiiceeeeeenns 98
Xkb Geometry Data Structures (Overlays)......cccccceeeeeeeeieeeieeeeeeicee e, 99
Key Surface, Shape Outlines and Bounding BOXccccevvveeeeeviiiiiiiennnnns 104
Shift Levels and GrOUPS........ccuuuiiiiiiiiiiiiee e 116
Do T O 1T o1 1Y/ = o PP UPPURSR 125
Server Map RelationShipsuueeeeiiiiiiie e 139
Virtual Modifier RelationShipS..........ueciiiiiiiii e, 164
Server Interaction with Types of Clientsccccciiiiiiiiiiiiiiieeeee 166
Server Derivation of State and Keyboard Mapping Components. 167
Xkb Compatibility Data StrUCIUIES.........ueiiieiieiee e 168
Building a new keyboard description from the server database............... 195

February 5, 1996

Library Version 1.0/Document Revision 1.0

LOF-1

The X Keyboard Extension

Table 1.1
Table 2.1
Table 2.2
Table 4.1
Table 4.2
Table 5.1
Table 5.2
Table 5.3
Table 6.1
Table 6.2
Table 8.1
Table 8.2
Table 8.3
Table 8.4
Table 8.5
Table 9.1
Table 9.2
Table 10.1
Table 10.2
Table 10.3
Table 10.4
Table 10.5
Table 10.6
Table 10.7
Table 10.8
Table 10.9
Table 11.1
Table 13.1
Table 14.1
Table 14.2
Table 14.3
Table 14.4
Table 15.1
Table 15.2
Table 15.3
Table 16.1
Table 16.2
Table 16.3
Table 16.4
Table 16.5
Table 16.6

Function Error Returns due to Extension Problemsccccccvvvvivvviiiiiiiccineeenn, 5
XKD ProtOCOI EITOIS ...ttt e e e e e e e 9
BadKeyboard Protocol Error resource_id Values.........ccccoeeeeeeeiiiiiiiieeeiiieenn, 9
XKD EVENTE TYPES ..ttt e e e e e e e e e e e e e e e e e e 14
XkbSelectEvents Mask CONSIANTScooeiiiiiiiiiiiecieec et 17
Real MOdIfier MASKS..........coeeiiiiiiiiii et e e e e e e e e e e e e e e e eeanaannnans 22
SYMDOIIC GroUP NAMIESeiiiiiiiiiiei et e e e e e e 23
XkbStateNotify Event Detail Masks............coovuiiiiiiiiiiiiiiii e 24
XkbDescRec Component REfErenCesS........coooeieiiiiiiieeeicceie e 27
Mask Bits fOor XKDDESCRECcceuuuiiuiiiiiiiie et e e e e e e e eeeeeannees 28
XkbIndicatorMapRec flags Field..........ccoooiiiiiiii e, 35

XkbIndicatorMapRec which_groups and groups, Keyboard Drives Indicator ..37
XkbIndicatorMapRec which_groups and groups, Indicator Drives Keyboard ..37

XkbIndicatorMapRec which_mods and mods, Keyboard Drives Indicator....... 38
XkbIndicatorMapRec which_mods and mods, Indicator Drives Keyboard....... 39
Predefined BellS ... 48
Bell Sounding and Bell Event Generating.........cccooeeeeeeiiiiieeeeeiiicccse e 49
XKD Keyboard CONMIOISuiiiiiieiiiiiieieee et 53
MOUSEKEYSACCEI FIRIASevveiiiieei s 59
AccessSXFeedback MasKS..........oooiiiiiiiiiiiiiiee e 63
ACCESSXNOLITY EVENIS ...cciiiiiiiiiiii it 64
AccessXNOtify EVeNt DetallSoooveiiiiiiiiiiiiiee e 65
D8 (o T 0] o1 1] =] PP UPRR 72
(70 11 f0] KSR 1Y/ =T Q= 1 £SO 73
GroupsWrap options (groups_wrap field)........ccooeevviiiiiiiiii e, 74
Access X Enable/Disable Bits (ax_options field)cccoeeeeiiiiiiiiiiiiiieeeeiiins 75
Library Control MasKS..........ueeiiiiiiiiiiiieee ettt 84
[To Yoo b= o I 1Y 1= RSP 95
Xkb Mapping Component Masks and Convenience Functions...............ccc...... 118
XKbMapChangesREC MaSKS..........ccoiiiiiiiiiiiiiiiie e 120
XKDBAINOCCHENMAP MASKSccovviiiiieeeeie e e 122
XKDAIOCSErverMap MaSKS...........uiiiiiiiiee it s e e e e e e e e e e e eeeeenaennnnne 124
EXaMPIE KEY TYPE... ittt 127
group_info Range Normalizationouuuiiiiiiiiiii e 134
Group INAEX CONSLANTScoviiiiiiiieeeeeie et 137
ACTION TYPBS ettt e e e e et e e e e e e e e e 142
MOiIfier ACHON TYPES .evveieiieiiii e e e e e e e e e 143
MOdIfIEr ACHON FIAGSuuvtiiiiiiiiiiiiiiei et 144
GrOUP ACHON TYPES ..ottt ettt e e e e e e e e e e eeaeas 145
Group ACLION FIAagS.......ooiieeeeeeicie s e e e e e e e 145
POINTET ACHION TYPES ... ittt e e e e e e e e e e e e e e e e e e e 146

February 5, 1996

Library Version 1.0/Document Revision 1.0

The X Keyboard Extension

Table 16.7
Table 16.8
Table 16.9
Table 16.10
Table 16.11
Table 16.12
Table 16.13
Table 16.14
Table 16.15
Table 16.16
Table 16.17
Table 16.18
Table 16.19
Table 16.20
Table 16.21
Table 17.1
Table 17.2
Table 18.1
Table 18.2
Table 19.1
Table 20.1
Table 20.2
Table 20.3
Table 20.4
Table 21.1
Table 22.1

Pointer BUtton ACHION TYPES.....ooiiiii ittt 148
Pointer Button ACtION FIAgSueeiiiiiii e 148
Pointer Default FIagsccoiiiiiii e 149
ISO Action Flags when XkbSA_ ISODFItISGroup is Setcccceeeveiiiieeeeeennnnee. 150
ISO Action Flags when XkbSA_ISODfltiIsGroup is Not Set........ccccceeeeeevennnn. 151
ISO Action affect Field ValUES ... 151
Switch Screen ACHION FlAgScvvviiiiiiiiii e 152
CONLrolS ACHION TYPES .oovtiiiiiiiieiei ettt e e e e e e et e e e e e aatr e e aeaenes 153
(©70] o1 i fo] I7ANox 1o o I o F= T 1 U SERUPR 153
Message ACHION FIAagSoooiiiet e 154
Device BUttON ACHION TYPES ..uuuii it e e 157
Device Button ACLION FlagsS..........uuuuiiiiiiiiiieeee e e e e e e e e e e eeeaaanens 157
Device Valuator v<n>_what High Bits Valuescccccociiiiii, 158
NV =11 T V70 £ 160
Explicit CompPonent MasKS.........coooiiiiiiiiiiiiee e 162
Symbol Interpretation MatCh Criteria...........cooveiiiiiiiiiiiiieeee e 171
Compatibility Map Component MasksS........ccccocoeeeeeiiiiiiiiieeceis e 173
SYMDBDOIIC NAMES MASKS......eeiiiiiiiiiiiiieiee ettt 181
XkbNameChanges Fields. ... 183
XkbNewKeyboardNotifyEvent DetailSccceeeiiiiiiiieeeiieeeeeeeee 187
Server Database Keyboard COmMPONENTSccoovviiiiiiiiiiiiiiiiiiiiriieeeeeee e 189
XkbComponentNameRec flags DitS.........oooiiiiiiii 192
want and need mask bits and required names COmpoNents............ccceeevevevevennnns 194
XkbDescRec components returned for values of want & need s...................... 196
XkbDevicelnfOREC MaSK BIlS..........cooiiiiiiiiiiiiiiiiiie e 199
Debug CoNtrol MASKSuuuuiiiiiiii e e e e e e e e 209

February 5, 1996

Library Version 1.0/Document Revision 1.0 LOT-2

The X Keyboard Extension 1 Overview

1

11

1.2

1.3

Overview

The X Keyboard Extension provides capabilities that are lacking or are cumbersome in the
core X protocol.

Core X Protocol Support for Keyboards

The core X protocol specifies the ways that$h# , Control andLock modifiers and

the modifiers bound to thdode_switch or Num_Lock keysyms interact to generate key-
syms and characters. The core protocol also allows users to specify that a key affects one
or more modifiers. This behavior is simple and fairly flexible, but it has a number of limi-
tations that make it difficult or impossible to properly support many common varieties of
keyboard behavior. The limitations of core protocol support for keyboards include:

» Use of a single, uniform, four-symbol mapping for all keyboard keys makes it difficult
to properly support keyboard overlays, PC-style break keys, or keyboards that comply
with 1ISO9995 or a host of other national and international standards.

» A second keyboard group may be specified using a modifier, but this has side-effects
that wreak havoc with client grabs and X toolkit translations. Furthermore, this
approach limits the number of keyboard groups to two.

» Poorly specified locking key behavior requires X servers to look for a few “magic”
keysyms to determine which keys should lock when pressed. This leads to incompati-
bilities between X servers with no way for clients to detect implementation differences.

» Poorly specified capitalization and control behavior requires modifications to X library
source code to support new character sets or locales and can lead to incompatibilities
between system-wide and X library capitalization behavior.

» Limited interactions between modifiers specified by the core protocol make many com-
mon keyboard behaviors difficult or impossible to implement. For example, there is no
reliable way to indicate whether or not the shift modifier should “cancel” the lock mod-
ifier.

» The lack of any explicit descriptions for indicators, most modifiers and other aspects of
the keyboard appearance requires clients that wish to clearly describe the keyboard to a
user to resort to a mish-mash of prior knowledge and heuristics.

Xkb Keyboard Extension Support for Keyboards

The X Keyboard Extension makes it possible to clearly and explicitly specify most aspects
of keyboard behavior on a per-key basis. It adds the notion of a keyboard group to the glo-
bal keyboard state and provides mechanisms to more closely track the logical and physical
state of the keyboard. For keyboard-control clients, Xkb provides descriptions and sym-
bolic names for many aspects of keyboard appearance and behavior.

In addition, the X Keyboard Extension includes additional keyboard controls designed to
make keyboards more accessible to people with movement impairments.

Xkb Extension Components

The Xkb extension is composed of two parts: a server extension, and a client-side X
library extension. These consist of a loadable module which may be activated when an X
server is started, and a modified version of Xlib. Both server and Xlib versions must be at
least X11 R6.

February 5, 1996 Library Version 1.0/Document Revision 1.0 1

The X Keyboard Extension

1 Overview

The diagram below shows the overall structure of the Xkb extension:

Xkb Extension

Xkb-aware | | Xkb-capable| | Xkb-unaware
User User User
Application Application | | Application Keyboard
Core Xlib | X Server
Xkb Server Extension

Xkb Core Xlib SOt Tttt ittty
Additons| Client Map; Server Mayy ~ Compatibility Map

Xlib | yyp Modifications | |77 ittt Tt

(Xkb to Core Xlib Controls| Indicator Mapi Names Geometry
functions) functions : ' :

T

Server Database of
Keyboard Components

Figure 1.1 Overall Xkb Structure

The server portion of the Xkb extension encompasses a database of named keyboard com-
ponents, in unspecified format, which may be used to configure a keyboard. Internally, the
server maintains keyboard descriptiowhich includes the keyboard state and configura-

tion (mapping). By “keyboard” we mean the logical keyboard device, which includes not
only the physical keys, but also potentially a set of up to 32 indicators (usually LEDs) and
bells.

The keyboard description is a composite of several different data structures, each of which
may be manipulated separately. When manipulating the server components, the design
allows partial components to be transmitted between the server and a client. The individ-
ual components are shown in Figure 1.1 above; they are:

Client Map
The key mapping information needed to convert arbitrary keycodes to symbols.

Server Map

The key mapping information categorizing keys by functionality (which keys are
modifiers, how keys behave, etc.).

Controls

Client configurable quantities effecting how the keyboard behaves, such as repeat
behavior and modifications for people with movement impairments.

February 5, 1996 Library Version 1.0/Document Revision 1.0 2

The X Keyboard Extension 1 Overview

13.1

1.3.2

1.4

Indicators
The mapping of behavior to indicators.

Geometry

A complete description of the physical keyboard layout, sufficient to draw a represen-
tation of the keyboard.

Names

A mapping of names to various aspects of the keyboard such as individual virtual
modifiers, indicators, and bells.

Compatibility Map
The definition of how to map core protocol keyboard state to Xkb keyboard state.

A client application interrogates and manipulates the keyboard by reading and writing
portions of the server description for the keyboard. In a typical sequence a client would
fetch the current information it is interested in, modify it, and write it back. If a client
wishes to track some portion of the keyboard state, it typically maintains a local copy of
the portion of the server keyboard description dealing with the items of interest, and
updates this local copy from events describing state transitions which are sent by the
server.

A client may request the server to reconfigure the keyboard either by sending explicit
reconfiguration instructions to it, or by telling it to load a new configuration from its data-
base of named components. Partial reconfiguration and incremental reconfiguration are
both supported.

Groups and Shift Levels

The graphic characters or control functions that may be accessed by one key are logically
arranged in groups and levels. See section 14.1 on page 116 for a complete description of
groups and levels.

Radio Groups

A radio group is a set of keys whose behavior simulates a set of radio buttons. Once a key
in a radio group is pressed, it stays logically depressed until another key in the group is
pressed, at which point the previously depressed key is logically release. Consequently, at
most one key in a radio group can be logically depressed at one time. A radio group is
defined by a radio group index, an optional name, and by assigning each key in the radio
groupXkbKB_RadioGroup behavior and the radio group index.

Client Types
This specification differentiates between three different classes of client applications:

» Xkb-aware applications
These applications make specific use of Xkb functionality and APIs not present in the
core protocol.

» Xkb-capable applications

February 5, 1996 Library Version 1.0/Document Revision 1.0 3

The X Keyboard Extension 1 Overview

15

1.6

1.7

1.7.1

These applications make no use of Xkb extended functionality and APIs directly. How-
ever, they are linked with a version of Xlib which includes Xkb, and indirectly benefit
from some of Xkb’s features.

» Xkb-unaware applications
These applications make no use of Xkb extended functionality or APIs, and require
Xkb’s functionality to be mapped to core Xlib functionality to operate properly.

Compatibility with the Core Protocol

Because the Xkb extension allows a keyboard to be configured in ways not foreseen by
the core protocol, and because Xkb-unaware clients are allowed to connect to a server
using the Xkb extension, there must be a means of converting between the Xkb domain
and the core protocol. The Xkb server extension maintains a compatibility map as part of
its keyboard description; this map controls conversion of Xkb generated events to core
protocol events, and the results of core protocol requests to appropriate Xkb state and con-
figuration.

Additional Protocol Errors

The Xkb extension adds a single protocol efBadKeyboard , to the core protocol error
set. See section 2.6 for a discussion oBa@Keyboard protocol error.

Extension Library Functions

The X Keyboard Extension replaces the core protocol definition of a keyboard with a
morelcomprehensive one. The X Keyboard Extension library interfaces are included in
Xlib.

Xlib detects the presence of the X Keyboard server extension, and uses Xkb protocol to
replace some standard X library functions related to the keyboard. If an application uses
only standard X library functions to examine the keyboard or process key events, it should
not need to be modified when linked with an X library containing the X keyboard exten-
sion. All of the keyboard-related X library functions have been modified to automatically
use Xkb protocol when the server extension is present.

The Xkb extension adds library interfaces to allow a client application to directly manipu-
late the new capabilities.

Error Indications

Xkb functions which communicate with the X server check to be sure the Xkb extension
has been properly initialized prior to doing any other operations. If the extension has not
been properly initialized or the application, library and server versions are incompatible,
these functions return an error indication as shown in Table 1.1. Because of this test,

1. X11R6.1 is the first release by the X Consortium, Inc.which includes the X Keyboard Extension in Xlib. X11R6
included work in progress on this extension as non-standard additions to the library.

February 5, 1996 Library Version 1.0/Document Revision 1.0 4

The X Keyboard Extension 1 Overview

BadAccess andBadMatch (due to incompatible versions) protocol errors should nor-
mally not be generated.

Table 1.1 Function Error Returns due to Extension Problems

Functions return type Return value
pointer to a structure NULL

Bool False

Status BadAccess

Many Xkb functions do not actually communicate with the X server; they only require
processing in the client-side portion of the library. Furthermore, some applications may
never actually need to communicate with the server; they simply use the Xkb library capa-
bilities. The functions which do not communicate with the server return either a pointer to

a structure, a Bool, or a Status. These functions check that the application has queried the
Xkb library version and return the values shown in Table 1.1 if it has not.

February 5, 1996 Library Version 1.0/Document Revision 1.0 5

The X Keyboard Extension 2 Initialization and General Programming

2

2.1

2.2

2.3

Initialization and General Programming Information

Extension Header Files
The following include files are part of the Xkb standard:

o <X11/XKBlib.n>
XKBIlib.h is the main header file for Xkb; it declares constants, types, and functions.
» <X1l/extensions/XKBstr.h>
XKBstr.n declares types and constants for Xkb. It is included automatically from
<X11/XKBlib.h> ; you should never need to reference it directly in your application
code.
» <X1l/extensions/XKB.h>
XKB.h defines constants for Xkb. It is included automatically fro¥i1/XKB-
str.h> ; you should never need to reference it directly in your application code.
» <Xl1l/extensions/XKBgeom.h>
XKBgeom.h declares types, symbolic constants, and functions for manipulating key-
board geometry descriptions.

Extension Name
The name of the Xkb extension is giverxiXill/extensions/Xkb.h>:
#define XkbName “XKEYBOARD”

Most extensions to the X protocol are initialized by calkhgitExtensiorand passing the
extension name. However, as explained in section 2.4, Xkb requires a more complex ini-
tialization sequence, and a client program should noXtalExtensiondirectly.

Determining Library Compatibility

If an application is dynamically linked, both the X server and the client side X library
must contain the Xkb extension in order for the client to use the Xkb extension capabili-
ties. Therefore a dynamically linked application must check both the library and the server
for compatibility before using Xkb function calls. A properly written program must check
for compatibility between the version of the Xkb library which is dynamically loaded and
the one used when the application was built. It must then check the server version for
compatibility with the version of Xkb in the library.

If your application is statically linked, you must still check for server compatibility, and
may check library compatibility. (It is possible to compile against one set of header files
and link against a different, incompatible, version of the library, although this should not
normally occur.)

To determine the compatibility of a library at runtime, e&bLibraryVersion

Bool XkbLibraryVersion (lib_major_in_outlib_minor_in_ouj
int* lib_major_in_out; /* specifies and returns the major Xkb library version. */
int* lib_minor_in_out; /* specifies and returns the minor Xkb library version. */

Pass the symbolic valutkbMajorVersion in lib_major_in_outandXkbMinorVer-

sion inlib_minor_in_out These arguments represent the version of the library used at
compile time. TheXkbLibraryVersiorfunction backfills the major and minor version
numbers of the library used at run timdibn major_in_outandlib_minor_in_out If the

February 5, 1996 Library Version 1.0/Document Revision 1.0 6

The X Keyboard Extension 2 Initialization and General Programming

versions of the compile time and run time libraries are compaXkld,ibraryVersion
returnsTrue , otherwise it returnBalse.

In addition, in order to use the Xkb extension, you must insure the extension is present in
the server and that the server supports the version of the extension expected by the client.
UseXkbQueryExtensioto do this, as described in the next section.

2.4 Initializing the Keyboard Extension

Call XkbQueryExtensioto check for the presence and compatibility of the extension in
the server and to initialize the extension. Because of potential version mismatches, you
cannot use the generic extension mechanism funct@@adryExtensioand XInitExten-
sion) for checking for the presence of, and initializing the Xkb extension.

You must calXkbQueryExtensioar XkbOpenDisplayefore using any other Xkb library
interfaces, unless such usage is explicitly allowed in the interface description in this docu-
ment. The exceptions an€kblgnoreExtensigrXkbLibraryVersionand a handful of audi-
ble-bell functions. You should not use any other Xkb functions if the extension is not
present or is uninitialized. In general, calls to Xkb library routines made prior to initializ-
ing the Xkb extension caugadAccess protocol errors.

XkbQueryExtensioboth determines whether a compatible Xkb extension is present in the
X server and initializes the extension when it is present.

Bool XkbQueryExtension(dpy, opcode_rtrn, event_rtrn, error_rtrn, major_in_out,
minor_in_ou}

Display * dpy; /* connection to the X server */

int * opcode_rtrn * backfilled with the major extension opcode */

int * event_rtrn /* backfilled with the extension base event code */

int * error_rtrn; /* backfilled with the extension base error code */

int * major_in_out /* compile time lib major version in, server major version out
*/

int * minor_in_out; /* compile time lib min version in, server minor version out */

The XkbQueryExtensiofunction determines whether a compatible version of the X Key-
board Extension is present in the server. If a compatible extension is pxédeptie-
ryExtensiorreturnsTrue ; otherwise it returnkalse .

If a compatible version of Xkb is preseKkbQueryExtensiomitializes the extension. It
backfills the major opcode for the keyboard extensiaprode_rtrnthe base event code

in event_rtrn the base error code émror_rtrn, and the major and minor version numbers

of the extension imajor_in_outandminor_in_out The major opcode is reported in the
req_majorfields of some Xkb events. For a discussion of the base event code, see section
4.1 on page 15.

February 5, 1996 Library Version 1.0/Document Revision 1.0 7

The X Keyboard Extension 2 Initialization and General Programming

2.5

As a convenience, you can use the funckehOpenDisplayo perform these three tasks
at once: open a connection to an X server, check for a compatible version of the Xkb
extension in both the library and the server, and initialize the extension for use.

Display *XkbOpenDisplay(display_name, event_rtrn, error_rtrn, major_in_out, minor_in_out,
reason_rtrn)
char display_namg /* hardware display name, which determines the display and
communications domain to be used */
int* event_rtrn /* backfilled with the extension base event code */
int* error_rtrn; I* backfilled with the extension base error code */
int* major_in_ouf /* compile time lib major version in, server major version out */
int* minor_in_ouf /* compile time lib minor version in, server minor version out */
int * reason_rtrn /* backfilled with a status code */

XkbOpenDisplays a convenience function which opens an X display connection and ini-
tializes the X keyboard extension. In all cases, upon resason_rtrncontains a status
value indicating success or the type of failuren#fjor_in_outandminor_in_outare not
NULL, XkbOpenDisplayirst callsXkbLibrary\Versiorto determine if the client library is
compatible, passing it the values pointed tartajor_in_outandminor_in_out If the

library is incompatibleXkbOpenDisplayackfillsmajor_in_outandminor_in_outwith

the major and minor extension versions of the library being used and matlithdf the
library is compatibleXkbOpenDisplayext callsXOpenDisplaywith thedisplay _name

If this fails, the function returnNULL If successfulXkbOpenDisplagalls XkbQueryEx-
tensionand backfills the major and minor Xkb server extension version numbers in
major_in_outandminor_in_out If the server extension version is not compatible with the
library extension version or if the server extension is not preskb©penDisplagloses

the display and returd$ULL When successful, the function returns the display connec-
tion.

The possible values foeason_rtrnare:

« XkbOD_BadLibraryVersion indicatesxkbLibraryVersiorreturnedralse .

« XkbOD_ConnectionRefused indicates the display could not be opened.

« XkbOD_BadServerVersion indicates the library and the server have incompatible
extension versions.

« XkbOD_NonXkbServer indicates the extension is not present in the X server.

« XkbOD_Success indicates that the function succeeded.

Disabling the Keyboard Extension

If a server supports the Xkb extension, the X library normally implements pre-Xkb key-
board functions using the Xkb keyboard description and state. The server Xkb keyboard
state may differ from the pre-Xkb keyboard state. This difference does not affect most cli-
ents, but there are exceptions. To allow these clients to work properly, you may instruct
the extension not to use Xkb functionality.

Call XkblgnoreExtensioto prevent core X library keyboard functions from using the X
Keyboard Extension. You must cXlkblgnoreExtensiobefore you open a server connec-
tion; Xkb does not provide a way to enable or disable use of the extension once a connec-
tion is established.

Bool XkblgnoreExtension(ignore)
Bool ignore /* True means ignore the extension */

February 5, 1996 Library Version 1.0/Document Revision 1.0 8

The X Keyboard Extension 2 Initialization and General Programming

XkblgnoreExtensiotells the X library whether to use the X Keyboard Extension on any
subsequently opened X display connections. If ignofeus , the library does not initial-

ize the Xkb extension when it opens a new display. This forces the X server to use com-
patibility mode and communicate with the client using only core protocol requests and
events. If ignore i§alse , the library treats subsequent callXtOpenDisplaynormally

and uses Xkb extension requests, events and state. Do not explicitly use Xkb on a connec-
tion for which it is disabledXkblgnoreExtensioreturnsFalse if it was unable to apply

the ignore request.

2.6 Protocol Errors
Many of the Xkb extension library functions described in this document can cause the X
server to report an error, referred to in this documentBasldxx protocol error, where
Xxx is some name. These errors are fielded in the normal manner, by the default Xlib error
handler, or one replacing it. Note that X protocol errors are not necessarily reported imme-
diately, due to the buffering of X protocol requests in Xlib and the server.

Table 2.1 lists the protocol errors that can be generated, and their causes.
Table 2.1 Xkb Protocol Errors

Error Cause

BadAccess The Xkb extension has not been properly initialized

BadKeyboard The device specified was not a valid core or input extension device

Badimplementation Invalid reply from server

BadAlloc Unable to allocate storage

BadMatch A compatible version of Xkb was not available in the server or an argument
has correct type and range, but is otherwise invalid

BadValue An argument is out of range

BadAtom A name is neither a valid Atom None

BadDevice Device, Feedback Class, or Feedback Id invalid

The Xkb extension adds a single protocol eBagKeyboard , to the core protocol error

set. This error code will be reported asé¢h®r_rtrn whenXkbQueryExtensiors called.

When aBadKeyboard error is reported in akErrorEvent , additional information is
reported in theesource_idield. The most significant byte of tmesource_ids a further
refinement of the error cause, as defined in Table 2.2. The least significant byte will con-
tain the device, class, or feedback id as indicated in the table.

Table 2.2 BadKeyboard Protocol Error resource_id Values

high-order byte value meaning low-order byte
XkbErr_BadDevice Oxff device not found device id
XkbErr_BadClass Oxfe device found, but it is of the wrong class classid
XkbErr_Badld Oxfd device found, class ok, but device does tie¢dback id

contain a feedback with the indicated id

2.7 Display and Device Specifications in Function Calls

Where a connection to the server is passed as an argument (Display*) and an
XkbDescPtr is also passed as an argument, the Display* argument must madigty the
field of theXkbDescRec pointed to by thXkbDescPtr argument, or else thapyfield

of theXkbDescRec must beNULL If they don’t match or thdpyfield is notNULL, a

February 5, 1996 Library Version 1.0/Document Revision 1.0 9

The X Keyboard Extension 2 Initialization and General Programming

BadMatch error is returned (either in the return value or a backfietus variable).
Upon successful return, tiapyfield of theXkbDescRec always contains the Display*
value passed in.

The Xkb extension can communicate with the X input extension if it is present. Conse-
guently, there can potentially be more than one input device connected to the server. Most
Xkb library calls which require communicating with the server involve both a server con-
nection (Display *dpy) and a device identifier (unsigned ddvice _spec In some cases,

the device identifier is implicit, and is taken as dewice_speftield of anXkbDescRec

structure passed as an argument.

The device identifier can specify any X input extension device Wiiby&lass compo-
nent, or it can specify the constaxikbUseCoreKbd . The use oKkbUseCoreKbd

allows applications to indicate the core keyboard without having to determine its device
identifier.

Where an Xkb device identifier is passed as an argument axikbBescPtr is also
passed as an argument, if either the argument ofikthidgescRec device speéeld is
XkbUseCoreKhd , and if the function returns successfully, KidDescPtr device_spec
field will have been converted froXkbUseCoreKbd to a real Xkb device id. If the func-
tion does not complete successfully, tewice_spebeld remains unchanged. Subse-
guently, the device id argument must matchdéece spebeld of theXkbDescPtr
argument. If they don’t match,BadMatch error is returned (either in the return value or
a backfilledStatus variable).

When the Xkb extension in the server hands an application a device identifier to use for
the keyboard, that id is the input extension identifier for the device if the server supports
the X Input Extension. If the server does not support the input extension, the meaning of
the identifier is undefined — the only guarantee is that when yoXkirtéseCoreKbd ,
XkbUseCoreKbd will work and the identifier returned by the server will refer to the core
keyboard device.

February 5, 1996 Library Version 1.0/Document Revision 1.0 10

The X Keyboard Extension 3 Data Structures

3

3.1

3.2

Data Structures

An Xkb keyboard description consists of a variety of data structures, each of which
describes some aspect of the keyboard. Although each data structure has its own peculiar-
ities, there are a number of features common to nearly all Xkb structures. This chapter
describes these common features and techniques for manipulating them.

Many Xkb data structures are interdependent; changing a field in one might require
changes to others. As an additional complication, some Xkb library routines allocate
related components as a group to reduce fragmentation and allocator overhead. In these
cases, simply allocating and freeing fields of Xkb structures might corrupt program mem-
ory. Creating and destroying such structures or keeping them properly synchronized dur-
ing editing is complicated and error prone.

Xkb provides functions and macros to allocate and free all major data structures. You
should use them instead of allocating and freeing the structures yourself.

Allocating Xkb Data Structures

Xkb provides functions, known as allocators, to create and initialize Xkb data structures.
In most situations, the Xkb functions that read a keyboard description from the server call
these allocators automatically. As a result, you will seldom have to directly allocate or ini-
tialize Xkb data structures.

However, if you need to enlarge an existing structure or construct a keyboard definition
from scratch, you may need to allocate and initialize Xkb data structures directly. Each
major Xkb data structure has its own unique allocator. The allocator functions share com-
mon features: allocator functions for structures with optional components take as an input
argument a mask of sub-components to be allocated. Allocators for data structures con-
taining variable length data take an argument specifying the initial length of the data.

You may call an allocator to change the size of the space allocated for variable length
data. When you call an allocator with an existing data structure as a parameter, the alloca-
tor does not change the data in any of the fields, with one exception: variable length data
might be moved. The allocator resizes the allocated memory if the current size is too
small. This normally involves allocating new memory, copying existing data to the newly
allocated memory, and freeing the original memory. This possible reallocation is impor-
tant to note because local variables pointing into Xkb data structures might be invalidated
by calls to allocator functions.

Adding Data and Editing Data Structures

You should edit most data structures via the Xkb-supplied helper functions and macros,
although a few data structures can be edited directly. The helper functions and macros
make sure everything is initialized and interdependent values are properly updated for
those Xkb structures that have interdependencies. As a general rule, if there is a helper
function or macro to edit the data structure, use it. For example, increasing the width of a
type requires you to resize every key that uses that type. This is complicated and ugly,
which is why there’s aXkbResizeKeyTygdanction.

Many Xkb data structures have arrays whose size is reported by two fields. The first field,
whose name is usually prefixed &%, represents the total number of elements that can be
stored in the array. The second field, whose name is usually prefixadbyspecifies

February 5, 1996 Library Version 1.0/Document Revision 1.0 11

The X Keyboard Extension 3 Data Structures

3.3

3.4

the number of elements currently stored there. These arrays typically represent data whose
total size cannot always be determined when the array is created. In these instances, the
usual way to allocate space and add data is as follows:

» Call the allocator function with some arbitrary size, as a hint.
» For those arrays which have ¥kb...Add..function, call it each time you want to add
new data to the array. The function expands the array if necessary.

For example, call:
XkbAllocGeomShapes(geom,4)

to say “I'll need space for four new shapes in this geometry.” This makes sure that
sz_shapesnum_shapes= 4, and resizes the shapes array if it isn’t. If this function suc-
ceeds, you are guaranteed to have space for the number of shapes you need.

When you call an editing function for a structure, you do not need to check for space,
because the function automatically checksstheandnum_fields of the array, resizes the
array if necessary, adds the entry to the array, and then updatesrthigeld.

Making Changes to the Server’s Keyboard Description

In Xkb, as in the core protocol, the client and server have independent copies of the data
structures that describe the keyboard. The recommended way to change some aspect of the
keyboard mapping in the X server is to edit a local copy of the Xkb keyboard description
and then send only the changes to the X server. This method helps eliminate the need to
transfer the entire keyboard description or even an entire data structure for only minor
changes.

To help you keep track of the changes you make to a local copy of the keyboard descrip-
tion, Xkb provides separate speahhngedata structures for each major Xkb data struc-
ture. These data structures do not contain the actual changed values: they only indicate the
changes which have been made to the structures that actually describe the keyboard.

When you wish to change the keyboard description in the server, you first modify a local
copy of the keyboard description and then flag the modifications in an appropriate
changes data structure. When you finish editing the local copy of the keyboard descrip-
tion, you pass your modified version of the keyboard description and the modified
changes data structure to an Xkb routine. This routine uses the modified keyboard descrip-
tion and changes structure to pass only the changed information to the server. Note that
modifying the keyboard description but not setting the appropriate flags in the changes
data structure causes indeterminate behavior.

Tracking Keyboard Changes in the Server

The server reports all changes in its keyboard description to any interested clients via spe-
cial Xkb events. Just as clients use special changes data structures to change the keyboard
description in the server, the server uses special changes data structures to tell a client
what changed in the server’s keyboard description.

Unlike clients, however, the server does not always pass the new values when it reports
changes to its copy of the keyboard description. Instead, the server only passes a changes
data structure when it reports changes to its keyboard description. This is done for effi-
ciency reasons — some clients do not always need to update their copy of the keyboard
description with every report from the server.

February 5, 1996 Library Version 1.0/Document Revision 1.0 12

The X Keyboard Extension 3 Data Structures

When your client application receives a report from the server indicating the keyboard
description has changed, you can determine the set of changes by passing the event to an
Xkb routine which “notes” event information in the corresponding changes data structure.
These “note changes” routines are defined for all major Xkb components, and their names
have the fornrKkkbNote{Component}ChangashereComponents the name of a major

Xkb component such agap or NamesWhen you want to copy these changes from the
server into a local copy of the keyboard description, call the correspoxkintget{ Com-
ponent}Changefunction passing it the changes structure. The function then retrieves

only the changed structures from the server and copies the modified pieces into the local
keyboard description.

3.5 Freeing Data Structures

For the same reasons you should not directlynsallocto allocate Xkb data structures,

you should not free Xkb data structures or components directly fusagy Xfree Xkb
provides functions to free the various data structures and their compgxiesmtgs use

the free functions supplied by Xkb. There is no guarantee that any particular field can be
safely freed byree or Xfree

February 5, 1996 Library Version 1.0/Document Revision 1.0 13

The X Keyboard Extension 4 Xkb Events

4

4.1

Xkb Events

The primary way the X server communicates with clients is by sending X events to them.
Some events are sent to all clients, while others are sent only to clients which have
requested them. Some of the events that can be requested are associated with a particular
window, and are only sent to those clients who have both requested the event and speci-
fied the window in which the event occurred.

The Xkb extension uses events to communicate the keyboard status to interested clients.
These events are not associated with a particular window. Instead, all Xkb keyboard status
events are reported to all interested clients, regardless of which window currently has the
keyboard focus and regardless of the grab state of the key]board.

The X server reports the events defined by the Xkb extension to your client application
only if you have requested them. You may request Xkb events by calling)dith®elect-
Eventsor XkbSelectEventDetailXkbSelectEventgquests Xkb events by their event

type, and causes them to be reported to your client application under all circumstances.
You can specify a finer granularity for event reporting by uXikigSelectEventDetajls

this case events are reported only when the specific detail conditions you specify have
been met.

Xkb Event Types

The Xkb Extension adds new event types to the X protocol definition. An Xkb event type

is defined by two fields in the X event data structure. One ig/fiedield, containing the

base event cod&his base event code is a value the X server assigns to each X extension
at runtime and which identifies the extension that generated the event; thus, the event code
in thetypefield identifies the event as an Xkb extension event, rather than an event from
another extension or a core X protocol event. You can obtain the base event code via a call
to XkbQueryExtensioar XkbOpenDisplayThe second field is the Xkb event type, which
contains a value uniquely identifying each different Xkb event type. Possible values are
defined by constants declared in the headexM&1/extensions/Xkb.h>.

Table 4.1 lists the categories of events defined by Xkb and their associated event types, as
defined inXkb.h Each event is described in more detail in the section referenced for that
event.

Table 4.1 Xkb Event Types

Event Type Conditions Generating Event Section Page

XkbNewKeyboardNotify Keyboard geometry; keycode range change 19 187
XkbMapNotify Keyboard mapping change 14.4 122
XkbStateNotify Keyboard state change 5.4 25
XkbControlsNotify Keyboard controls state change 10.11 79
XkblndicatorStateNotify Keyboard indicators state change 8.5 45
XkbIndicatorMapNotify Keyboard indicators map change 8.5 45
XkbNamesNotify Keyboard name change 18.5 185
XkbCompatMapNotify Keyboard compatibility map change 17.5 178
XkbBellNotify Keyboard bell generated 9.4 52

1. The one exception to this rule is ebExtensionDeviceNotify event report which is sent when a client
attempts to use an unsupported feature of an X Input Extension device (see section 21.4).

February 5, 1996 Library Version 1.0/Document Revision 1.0 14

The X Keyboard Extension 4 Xkb Events

Table 4.1 Xkb Event Types

Event Type Conditions Generating Event Section Page
XkbActionMessage Keyboard action message 16.1.11 155
XkbAccessXNotify AccessX state change 10.6.4 65
XkbExtensionDeviceNotify Extension device change 21.6 207

4.2 Xkb Event Data Structures

Xkb reports each event it generates in a unique structure holding the data values needed to
describe the conditions the event is reporting. However, all Xkb events have certain things
in common. These common features are contained in the same fields at the beginning of
all Xkb event structures, and are described indtiAnyEvent structure:

typedef struct {
int type; /* Xkb extension base event code */
unsigned long serial; /* X server serial number for event */
Bool send_event; /Jrue => synthetically generated */
Display * display; [* server connection where event generated */
Time time; /* server time when event generated */
int xkb_type; /* Xkb minor event code */
unsigned int device; /* Xkb device id, will not d&bUseCoreKbd */

} XkbAnyEvent;

For any Xkb event, thiypefield is set to the base event code for the Xkb extension,
assigned by the server to all Xkb extension eventss&hal, send_evenanddisplay

fields are as described for all X11 events. fimefield is set to the time when the event
was generated and is expressed in millisecondsxRineypefield contains the minor
extension event code, which is the extension event type, and is one of the values listed in
Table 4.1. Thelevicefield contains the keyboard device identifier associated with the
event. This is nevexkbUseCoreKbd , even if the request that generated the event speci-
fied a device oKkbUseCoreKbd . If the request that generated the event specified
XkbUseCoreKbd , devicecontains a value assigned by the server to specify the core key-
board. If the request that generated the event specified an X input extensiondiswoee,
contains that same identifier.

Other data fields specific to individual Xkb events are described in subsequent chapters
where the events are described.

4.3 Selecting Xkb Events

Xkb events are selected using an event mask, much the same as normal core X events are
selected. However, unlike selecting core X events, where you must specify the selection
status (on or off) for all possible event types whenever you wish to change the selection
criteria for any one event, Xkb allows you to restrict the specification to only the event
types you wish to change. This means you don’t need to remember the event selection val-
ues for all possible types each time you want to change one of them.

Many Xkb event types are generated under several different circumstances. When select-
ing to receive an Xkb event, you may specify either that you want it delivered under all
circumstances, or that you want it delivered only for a subset of the possible circum-
stances.

February 5, 1996 Library Version 1.0/Document Revision 1.0 15

The X Keyboard Extension 4 Xkb Events

You can also deselect an event type that was previously selected for, using the same gran-
ularity.

Xkb provides two functions to select and deselect delivery of Xkb ew&kiSelect-
Eventsallows you to select or deselect delivery of more than one Xkb event type at once.
Events selected usirkkbSelectEventre delivered to your program under all circum-
stances which generate the events. To restrict delivery of an event to a subset of the condi-
tions under which it occurs, calkbSelectEventDetail¥XkbSelectEventDetaitnly

allows you to change the selection conditions for a single event at a time, but it provides a
means of fine-tuning the conditions under which the event is delivered.

To select and / or deselect for delivery of one or more Xkb events and have them delivered
under all conditions, caKkkbSelectEvents

Bool XkbSelectEventgdisplay, device_spec, bits_to_change, values_fol)_bits
Display * display, /* connection to the X server */
unsigned int device_spec /* device id, orXkbUseCoreKbd */
unsigned long inbits_to_change?¥ determines events to be selected / deselected */
unsigned long invalues_for_bitg* 1=>select, 0->deselect; for eventshits_to_changé/

This request changes the Xkb event selection mask for the keyboard specified by
device_spec

Each Xkb event that can be selected is represented by a bitditssthie _changend
values_for_bitsnasks. Only the event selection bits specified byitseto _change

parameter are affected; any unspecified bits are left unchanged. To turn on event selection
for an event, set the bit for the event in iits_to_chang@arameter and set the corre-
sponding bit in thealues_for_bitparameter. To turn off event selection for an event, set
the bit for the event in theits_to_chang@arameter and do not set the corresponding bit

in thevalues_for_bitpparameter. The valid values for both of these parameters are an
inclusive bitwise OR of the masks shown in Table 4.2 on page 18. There is no interface to
return your client’s current event selection mask. Clients cannot set other clients’ event
selection masks.

If a bit is not set in thbits_to_changg@arameter, but the corresponding bit is set in the
values_for_bitparameter, BadMatch protocol error results. If an undefined bit is set in
either thebits_to_changer thevalues_for_bitgparameter, 8adValue protocol error
results.

All event selection bits are initially zero for clients using the Xkb extension. Once you set
some bits, they remain set for your client until you clear them via another B&ih8e-
lectEvents

XkbSelectEventeturnsFalse if the Xkb extension has not been initilialized amde
otherwise.

To select or deselect for a specific Xkb event and optionally place conditions on when
events of that type are reported to your client,X&liSelectEventDetail3 his allows you

February 5, 1996 Library Version 1.0/Document Revision 1.0 16

The X Keyboard Extension 4 Xkb Events

to exercise a finer granularity of control over delivery of Xkb events MithSelect-
Events

Bool XkbSelectEventDetail¢display, device_spec, event_type, bits_to_charalees_for_bits
Display * display, [* connection to the X server */
unsigned int device_spec /* device id, orXkbUseCoreKbd */
unsigned int event_type /* Xkb event type of interest */
unsigned long inbits_to_changg™* event selection details */
unsigned long invalues_for_bitg* values for bits selected Wyits_to_changé/

While XkbSelectEventllows multiple events to be selecté#bSelectEventDetails
changes the selection criteria for a single type of Xkb event. The interpretation of the
bits_to_changandvalues_for_bitsnasks depends on the event type in question.

XkbSelectEventDetaitshanges the Xkb event selection mask for the keyboard specified
by device_speand the Xkb event specified byent_typeTo turn on event selection for
an event detail, set the bit for the detail inlite_to_changg@arameter and set the corre-
sponding bit in thealues_for_bitparameter. To turn off event detail selection for an
detail, set the bit for the detail in tbés_to_chang@arameter and do not set the corre-
sponding bit in theralues_for_bitparameter.

If an invalid event type is specifiedBadValue protocol error results. If a bit is not set in
thebits_to_chang@arameter, but the corresponding bit is set irvédtees_for_bits
parameter, 8adMatch protocol error results. If an undefined bit is set in either the
bits_to_changer thevalues_for_bitparameter, 8adValue protocol error results.

For each type of Xkb event, the legal event details that you can specifyXkliBelect-
EventDetailgequest are listed in the chapters that describe each event in detail.
4.3.1 Event Masks

The X server reports the events defined by Xkb to your client application only if you have
requested them via a call X&kbSelectEventsr XkbSelectEventDetailSpecify the event
types in which you are interested in a mask, as described in section 4.3.

Table 4.2 lists the event mask constants that can be specified witkliSelectEvents
request, and the circumstances in which the mask should be specified.

Table 4.2 XkbSelectEvents Mask Constants

Event Mask Value Notification Wanted
XkbNewKeyboardNotifyMask (1L<<0) Keyboard geometry change
XkbMapNotifyMask (1L<<1) Keyboard mapping change
XkbStateNotifyMask (1L<<?2) Keyboard state change
XkbControlsNotifyMask (1L<<3) Keyboard control change
XkblIndicatorStateNotifyMask (1L<<4) Keyboard indicator state change
XkbIndicatorMapNotifyMask (1L<<5b) Keyboard indicator map change
XkbNamesNotifyMask (1L<<6) Keyboard name change
XkbCompatMapNotifyMask (1L<<7) Keyboard compat map change
XkbBellNotifyMask (1L<<8) Bell

XkbActionMessageMask (1L<<9) Action message
XkbAccessXNotifyMask (1L<<10) AccessX features
XkbExtensionDeviceNotifyMask (1L<<11) Extension device

February 5, 1996 Library Version 1.0/Document Revision 1.0 17

The X Keyboard Extension 4 Xkb Events

Table 4.2 XkbSelectEvents Mask Constants

Event Mask Value Notification Wanted
XkbAllEventsMask (OXFFF) All Xkb events

4.4 Unified Xkb Event Type

The XkbEvent structure is a union of the individual structures declared for each Xkb
event type and for the core proto&@lvent type. Given atxkbEvent structure, you may

use thaypefield to determine if the event is an Xkb evegpéequals the Xkb base event
code; see section 2.4). If the event is an Xkb event, you may then aseg/ tkd_type

field to determine the type of Xkb event, and thereafter access the event dependent com-
ponents using the union member corresponding to the particular Xkb event type.

typedef union _XkbEvent {

int type;
XkbAnyEvent any;
XkbStateNotifyEvent state;
XkbMapNotifyEvent map;
XkbControlsNotifyEvent ctrls;
XkbIndicatorNotifyEvent indicators;
XkbBellNotifyEvent bell;
XkbAccessXNotifyEvent accessx;
XkbNamesNotifyEvent names;
XkbCompatMapNotifyEvent compat;
XkbActionMessageEvent message;

XkbExtensionDeviceNotifyEvent device;
XkbNewKeyboardNotifyEvent new_kbd;
XEvent core;

} XkbEvent;

This unified Xkb event type includes a norix&vent as used by the core protocol, so it

is straightforward for applications that use Xkb events to call the X library event functions
without having to cast every reference. For example, to get the next event, you can simply
declare a variable of typékbEvent and call:

XNextEvent(dpy,&xkbev.core);

February 5, 1996 Library Version 1.0/Document Revision 1.0 18

The X Keyboard Extension 5 Keyboard State

5 Keyboard State

Keyboard state encompasses all of the transitory information necessary to map a physical
key press or release to an appropriate event. The Xkb keyboard state consists of primitive
components and additional derived components which are maintained for efficiency rea-
sons. The diagram below shows the components of Xkb keyboard state and their relation-
ships.

Xkb State

Base Modifiers m

— Compatibility State

Base Group mE

| Compatibility Lookup Stats

D

| Effective Modifiers

Locked Modifiers [

P Compatibility Grab State

L ;
Locked Group [T} Effective Group

Latched Modifiers [~

|
g

| | ookup State

Latched Group

| Grab State [

Core Pointer Buttons

Server Internal Modifiers

IgnoreLock Modifiers
J Compatibility Map

IgnoreGroupLock

Figure 5.1 Xkb State

5.1 Keyboard State Description

The Xkb keyboard state is comprised of the state of all keyboard modifiers, the keyboard
group, and the state of the pointer buttons. These are grouped into the following compo-
nents:

The locked group and locked modifiers.
The latched group and latched modifiers.
The base group and base modifiers.

The effective group and effective modifiers.
The state of the core pointer buttons.

February 5, 1996 Library Version 1.0/Document Revision 1.0 19

The X Keyboard Extension 5 Keyboard State

ThemodifiersareShift , Lock , Control , andMod1-Mod5, as defined by the core proto-

col. A modifier can be thought of as a toggle which is either set or unset. All modifiers are
initially unset. When a modifier is locked, it is set and remains set for all future key
events, until it is explicitly unset. A latched modifier is set, but automatically unsets after
the next key event that does not change the keyboard state. Locked and latched modifier
state can be changed by keyboard activity or via Xkb extension library functions.

The Xkb extension provides support kmysym groupsas defined by ISO9995:

Group A logical state of a keyboard providing access to a collection of characters. A
group usually contains a set of characters which logically belong together and
which may be arranged on several shift levels within that group.

The Xkb extension supports up to four keysym groups. Groups are named beginning with
one and indexed beginning with zero. All group states are indicated using the group index.
At any point in time, there is zero or one locked group, zero or one latched group, and one
base group. When a group is locked, it supersedes any previous locked group and remains
the locked group for all future key events, until a new group is locked. A latched group
applies only to the next key event that does not change the keyboard state. The locked and
latched group can be changed by keyboard activity or via Xkb extension library functions.

Changing to a different group changes the keyboard state to produce characters from a dif-
ferent group. Groups are typically used to switch between keysyms of different languages
and locales.

Thepointer buttonsareButtonl - Button5 , as defined by the core protocol.

Thebase groumndbase modifiersepresent keys that are physically or logically down.
These and the pointer buttons can be changed by keyboard activity and not by Xkb
requests. It is possible for a key to be logically down, but not physically down, and neither
latched nor locked.

Theeffective modifierare the bitwise union of the locked, latched, and the base modifi-
ers.

Theeffective groups the arithmetic sum of the group indices of the latched group, locked
group, and base group, which is then normalized by some function. The result is a mean-
ingful group index.

n = number of keyboard groups, 1<=n<=4
0 <= any of locked, latched, or base group <n
effective group = f(locked group + latched group + base group)

The function f insures the effective group is within range. The precise function is specified
for the keyboard and can be retrieved through the keyboard description. It may wrap
around, clamp down, or default. Few applications will actually examine the effective
group and far fewer still will examine the locked, latched, and base groups.

There are two circumstances under which groups are normalized:

1. Keys may be logically down when they are physically up due to their electrical properties, or due to the keyboard
extension in the X server having filtered the key release, for esoteric reasons.

February 5, 1996 Library Version 1.0/Document Revision 1.0 20

The X Keyboard Extension 5 Keyboard State

1. The global locked or effective group changes. In this case, the changed group is nor-
malized into range according to the settings ofgtioeips_wragfield of theXkbCon-
trolsRec structure for the keyboard (see section 10.7.1).

2. The Xkb library is interpreting an event with an effective group that is legal for the
keyboard as a whole, but not for the key in question. In this case, the group to use for
this event only is determined using treup_infofield of the key symbol mapping
(XkbSymMapReq for the event key.

Each non-modifier key on a keyboard has zero or more symbols, or keysyms, associated
with it. These are the logical symbols which the key can generate when it is pressed. The
set of all possible keysyms for a keyboard is divided into groups. Each key is associated
with zero or more groups; each group contains one or more symbols. When a key is
pressed, the determination of which symbol for the key is selected is based on the effec-
tive group and the shift level, which is determined by which modifiers are set.

A client which does not explicitly call Xkb functions, but which otherwise makes use of

an X library containing the Xkb extension, will have keyboard state represented in bits O -
14 of the state field of events which report modifier and button state. Such a client is said
to beXkb-capableA client which does explicitly call Xkb functions is Xikb-awarecli-

ent. The Xkb keyboard state includes information derived from the effective state and
from two server parameters which can be set through the keyboard extension. The follow-
ing components of keyboard state pertain to Xkb-capable and Xkb-aware clients:

» lookup state: lookup group and lookup modifiers
» grab state: grab group and grab modifiers

Thelookup modifier@ndlookup groupare represented in the state field of core X events.
The modifier state and keycode of a key event are used to determine the symbols associ-
ated with the event. FéteyPress andKeyRelease events, the lookup modifiers are
computed as:

((base | latched | locked) &erver_internal_modifie)s
Otherwise the lookup modifiers are computed as:

((base | latched | (locked &ghore_lock$) & ~server_internal_modifiejs
The lookup group is the same as the effective group.

When an Xkb-capable or Xkb-aware client wishes to map a keycode to a keysym, it
should use thieookup state— the lookup group and the lookup modifiers.

Thegrab stateis the state used when matching events to passive grabs. If the event acti-
vates a grab, thgrab modifiersandgrab groupare represented in the state field of core X
events; otherwise, the lookup state is used. The grab modifiers are computed as:

(((base | latched | (locked & ~ignore_locks)) & ~server_internal_modifiers)

If the server’dgnoreGroupLock control (see section 10.7.3) is not set, the grab group is
the same as the effective group. Otherwise, the grab group is computed from the base
group and latched group, ignoring the locked group.

The final three components of Xkb state are applicable to clients which are not linked with
an Xlib containing the X keyboard extension library and therefore are not aware of the
keyboard extensiorXkb-unawareclients):

February 5, 1996 Library Version 1.0/Document Revision 1.0 21

The X Keyboard Extension 5 Keyboard State

» The compatibility modifier state.
» The compatibility lookup modifier state.
» The compatibility grab modifier state.

The X11 protocol interpretation of modifiers does not include direct support for multiple
groups. When an Xkb-extended X server connects to an Xkb-unaware client, the compati-
bility states remap the keyboard group into a core modifier whenever possible. The com-
patibility state corresponds to the effective modifier and effective group state, with the
group remapped to a modifier. The compatibility lookup and grab states correspond to the
lookup and grab states, respectively, with the group remapped to a modifier. The compati-
bility lookup state is reported in events that do not trigger passive grabs, otherwise the
compatibility grab state is reported.

5.2 Changing the Keyboard State

5.2.1 Changing Modifiers

The functions in this section which change the use of modifiers use a mask in the parame-
teraffect It is a bitwise inclusive OR of the legal modifier masks:

Table 5.1 Real Modifier Masks

Mask
ShiftMask
LockMask
ControlMask
Modl1Mask
Mod2Mask
Mod3Mask
Mod4Mask
Mod5Mask

To lock and unlock any of the eight real keyboard modifiersXkbé ockModifiers:

Bool XkbLockModifiers (display, device spec, affect, values

Display * display, [* connection to the X server */

unsigned int device_spec/* device id, orXkbUseCoreKbd */

unsigned int affect /* mask of real modifiers whose lock state is to change */
unsigned int values /* 1 =>lock, 0 => unlock; only for modifiers selecteddffect*/

XkbLockModifiersends a request to the server to lock the real modifiers selected by both
affectandvalues and to unlock the real modifiers selectedfigctbut not selected by

values XkbLockModifiergloes not wait for a reply from the server. It retuing if the
request was sent, afdise otherwise.

To latch and unlatch any of the eight real keyboard modifierskiseatchModifiers:
Bool XkbLatchModifiers (display, device_spec, affect, valyes

Display * display /* connection to the X server */

unsigned int device_spec /* device id, orXkbUseCoreKbd */

unsigned int affect /* mask of modifiers whose latch state is to change */
unsigned int values /* 1 => latch, 0 => unlatch; only for mods selectedafffgct*/

February 5, 1996 Library Version 1.0/Document Revision 1.0 22

The X Keyboard Extension

5 Keyboard State

5.2.2

5.3

XkbLatchModifiersends a request to the server to latch the real modifiers selected by
bothaffectandvalues and to unlatch the real modifiers selecteafbgctbut not selected
by values XkbLatchModifiergloes not wait for a reply from the server. It returnge if

the request was sent, alRalse otherwise.

Changing Groups
Reference the keysym group indices with these symbolic constants:
Table 5.2 Symbolic Group Names

Symbolic Name Value
XkbGrouplindex 0
XkbGroup2Iindex 1
XkbGroup3Iindex 2
XkbGroup4index 3

To lock the keysym group, caflkbLockGroup.

Bool XkbLockGroup (display, device_spec, group
Display * display, [* connection to the X server */
unsigned int device_spec /* device id, orXkbUseCoreKbd */
unsigned int group, /* index of the keysym group to lock */

XkbLockGroupsends a request to the server to lock the spegfeg, and does not wait
for a reply. It returnJrue if the request was sent, aRdlse otherwise.

To latch the keysym group, cadkbLatchGroup.

Bool XkbLatchGroup (display, device_spec, group
Display * display [* connection to the X server */
unsigned int device_spec /* device id, orXkbUseCoreKbd */
unsigned int group; /* index of the keysym group to latch */

XkbLatchGroupsends a request to the server to latch the specified group, and does not
walit for a reply. It return3rue if the request was sent, aRdise otherwise.

Determining Keyboard State
Xkb keyboard state may be represented iXkbStateRec structure, defined below:

unsigned char
unsigned char
unsigned char
unsigned char
unsigned char

latched_group;

locked_group;
mods;
base _mods;

latched _mods;

typedef struct {
unsigned char group; [* effective group index */
unsigned char base_group; /* base group index */

/* latched group index */
/* locked group index */
[* effective modifiers */

[* base modifiers */

[* latched modifiers */

unsigned char locked_mods; /* locked modifiers */
unsigned char compat_state; [* effective group => modifiers */
unsigned char grab_mods; /* modifiers used for grabs */

unsigned char
unsigned char
unsigned char

compat_grab_mods; /* mods used for compatibility mode grabs */

lookup_mods;

/* modifiers used to lookup symbols */

compat_lookup_mods;/* mods used for compatibility lookup */

February 5, 1996

Library Version 1.0/Document Revision 1.0 23

The X Keyboard Extension 5 Keyboard State

5.4

unsigned short ptr_buttons; * 1 bit => corresponding pointer btn is down */
} XkbStateRec*XkbStatePtr;

To obtain the keyboard state, UddbGetState.
StatusXkbGetState(display device_specstate_returi

Display * display, [* connection to the X server */
unsigned int device_spec /* device id, orXkbUseCoreKbd */
XkbStatePtr state_return /* backfilled with Xkb state */

The XkbGetStatéunction queries the server for the current keyboard state, waits for a
reply, and then backfillstate_returnwith the results.

All group values are expressed as group indices in the range [0..3]. Modifiers and the
compatibility modifier state values are expressed as the bitwise union of the core X11
modifier masks. The pointer button state is reported as in the core X11 protocol.

Tracking Keyboard State
The Xkb extension reporbkbStateNotify events to clients wanting notification

whenever the Xkb state changes. The changes reported include changes to any aspect of

the keyboard state: when a modifier is set or unset, when the current group changes, or
when a pointer button is pressed or released. As with all Xkb exdhStateNotify
events are reported to all interested clients without regard to the current keyboard input
focus or grab state.

There are many different types of Xkb state changes. Xkb defines an event detail mask
corresponding to each type of change. The event detail masks are listed in Table 5.3.

Table 5.3 XkbStateNotify Event Detail Masks

Mask Value
XkbModifierStateMask (AL << 0)
XkbModifierBaseMask (AL << 1)
XkbModifierLatchMask (1L << 2)
XkbModifierLockMask (AL << 3)
XkbGroupStateMask (1L << 4)
XkbGroupBaseMask (1L << 5)
XkbGroupLatchMask (1L << 6)
XkbGroupLockMask (AL << 7)
XkbCompatStateMask (1L << 8)
XkbGrabModsMask (1L << 9)
XkbCompatGrabModsMask (1L << 10)
XkbLookupModsMask (1L << 11)
XkbCompatLookupModsMask (1L << 12)
XkbPointerButtonMask (1L << 13)

XkbAllIStateComponentsMask (0x3fff)

To track changes in the keyboard state for a particular device, select to deive
StateNotify events by calling eithetkbSelectEventsr XkbSelectEventDetai(see
section 4.3).

February 5, 1996 Library Version 1.0/Document Revision 1.0 24

The X Keyboard Extension 5 Keyboard State

To receivexkbStateNotify events under all possible conditions, ¢ddbSelectEvents
and pasXkbStateNotifyMask in bothbits_to_changandvalues_for_bits

To receivexkbStateNotify events only under certain conditions, ¢étbSelectEvent-
Details usingXkbStateNotify as theevent_typeand specifying the desired state
changes imits_to_changandvalues_for_bitaising mask bits from Table 5.3.

The structure fokkbStateNotify events is:

typedef struct {
int type; /* Xkb extension base event code */
unsigned long serial; [* X server serial number for event */
Bool send_event; /Arue => synthetically generated */
Display * display; [* server connection where event generated */
Time time; /* server time when event generated */
int xkb_type; [*XkbStateNotify */
int device; /* Xkb device id, will not bXkbUseCoreKbd */
unsigned int changed; /* bits indicating what has changed */
int group; /* group index of effective group */
int base _group; /* group index of base group */
int latched_group; /* group index of latched group */
int locked_group; /* group index of locked group */
unsigned int mods; [* effective modifiers */
unsigned int base_mods; /* base modifiers */
unsigned int latched_mods; /* latched modifiers */
unsigned int locked_mods; /* locked modifiers */
int compat_state; /* computed compatibility state */
unsigned char grab_mods; /* modifiers used for grabs */
unsigned char compat_grab_mods; /* modifiers used for compatibility grabs */
unsigned char lookup_mods; /* modifiers used to lookup symbols */
unsigned char compat_lookup_mods; /* mods used for compatibility look up */
int ptr_buttons; /* core pointer buttons */
KeyCode keycode; /* keycode causing event, 0 if programmatic */
char event_type; * core eventrédq_majoror req_minornon zero */
char reqg_major; [* major request code if program trigger, else 0 */
char req_minor; /* minor request code if program trigger, else 0 */

} XkbStateNotifyEvent;

When you receive adkbStateNotify event, theehangedield indicates which ele-
ments of keyboard state have changed. This will be the bitwise inclusive OR of one or
more of theXkbStateNotify event detail masks shown in Table 5.3 on page 25. All
fields reported in the event are valid, but only those indicatedangedhave changed
values.

Thegroupfield is the group index of the effective keysym group. bagse _group
latched_groupandlocked_grougdields are set to a group index value representing the

base group, the latched group, and the locked group, respectively. The X server can set the
modifier and compatibility state fields to a union of the core modifier mask bits; this union
represents the corresponding modifier states.piihduttonfield gives the state of the

core pointer buttons as a mask composed of an inclusive OR of zero or more of the core
pointer button masks.

February 5, 1996 Library Version 1.0/Document Revision 1.0 25

The X Keyboard Extension 5 Keyboard State

Xkb state changes can occur either in response to keyboard activity or under application
control. If a key event caused the state chang&eeoddield gives the keycode of the

key event, and thevent_typdield is set to eithelKeyPress or KeyRelease . If a pointer
button event caused the state changekelyeoddield is zero, and thevent_typdield is

set to eitheButtonPress or ButtonRelease . Otherwise, the major and minor codes

of the request that caused the state change are givenra@gthreajorandreq_minor

fields, and thé&eycoddield is zero. Theeq_majorvalue is the same as thmajor exten-

sion opcode

February 5, 1996 Library Version 1.0/Document Revision 1.0 26

The X Keyboard Extension 6 Complete Keyboard Description

6

6.1

Complete Keyboard Description

The complete Xkb description for a keyboard device is accessed using a single structure
containing pointers to major Xkb components. This chapter describes this single structure
and provides references to other sections of this document that discuss the major Xkb
components in detail.

The XkbDescRec Structure

The complete description of an Xkb keyboard is given b}kdobescRec . The compo-
nent structures in theékbDescRec represent the major Xkb components outlined in Fig-
ure 1.1 on page 3.

typedef struct {
struct _XDisplay * display; [* connection to X server */
unsigned short flags; /* private to Xkb, do not modify */
unsigned short device_spec; [/* device of interest */
KeyCode min_key_code; /* minimum keycode for device */
KeyCode max_key_code; /* maximum keycode for device */
XkbControlsPtr ctrls; [* controls */
XkbServerMapPtr server; [* server keymap */
XkbClientMapPtr map; [* client keymap */
XkblIndicatorPtr indicators; /* indicator map */
XkbNamesPtr names; /* names for all components */
XkbCompatMapPtr compat; [* compatibility map */
XkbGeometryPtr geom; [* physical geometry of keyboard */

} XkbDescReg *XkbDescPtr;

Thedisplayfield points to an X display structure. Thagsfield is private to the library:
modifying flags may yield unpredictable results. Ttievice speéield specifies the
device identifier of the keyboard input device XgbUseCoreKeyboard , which speci-
fies the core keyboard device. Timen_key codandmax_key_ codéelds specify the
least and greatest keycode that can be returned by the keyboard.

The other fields specify structure components of the keyboard description and are
described in detail in other sections of this document. Table 6.1 identifies the subsequent
sections of this document which discuss the individual components XkhhbescRec .

Table 6.1 XkbDescRec Component References

XkbDescRec Field For more info

ctrls Chapter 10
server Chapter 16
map Chapter 15
indicators Chapter 8

names Chapter 18
compat Chapter 17
geom Chapter 13

Each structure component has a corresponding mask bit which is used in function calls to
indicate that the structure should be manipulated in some manner, such as allocating it or

February 5, 1996 Library Version 1.0/Document Revision 1.0 27

The X Keyboard Extension 6 Complete Keyboard Description

6.2

6.3

6.4

freeing it. These masks and their relationships to the fields xkihidescRec are shown
in Table 6.2.

Table 6.2 Mask Bits for XkbDescRec

Mask Bit X_kaescRec Value
Field

XkbControlsMask ctrls (1L<<0)
XkbServerMapMask server (1L<<1)
XkblClientMapMask map (1L<<?2)
XkblndicatorMapMask indicators (1L<<3)
XkbNamesMask names (1L<<4)
XkbCompatMapMask compat (1L<<5)
XkbGeometryMask geom (1L<<6)

XkbAllComponentsMask All Fields (Ox7f)

Obtaining a Keyboard Description from the Server

To retrieve one or more components of a keyboard device descriptiotkhGetKey-
board (see alsXkbGetKeyboardbyNamen page 194).

XkbDescPtiXkbGetKeyboard(display, which, device_spec
Display * display, [* connection to X server */
unsigned int whichy /* mask indicating components to return */
unsigned int device_spec /* device for which to fetch description, ¥kbUseCoreKbd */

XkbGetKeyboardllocates and returns a pointer to a keyboard description. It queries the
server for those components specified invilnech parameter for devicgevice_speand
copies the results to thékbDescRec it allocated. The remaining fields in the keyboard
description are set tdULL The valid masks fawhichare those listed in Table 6.2.

XkbGetKeyboardan generatBadAlloc protocol errors.

To free the returned keyboard description, XikbFreeKeyboardsee section 6.4).

Tracking Changes to the Keyboard Description in the Server

The server can generate events whenever its copy of the keyboard description for a device
changes. Refer to section 14.4 on page 122 for detailed information on tracking changes to
the keyboard description.

Allocating and Freeing a Keyboard Description

Applications seldom need to directly allocate a keyboard description; cikingetKey-
boardusually suffices. In the event you need to create a keyboard description from
scratch, however, us&kbAllocKeyboardather than directly callingpallocor Xmalloc

XkbDescRec *XkbAllocKeyboard (void)

If XkbAllocKeyboardails to allocate the keyboard description, it retidii L. Other-

wise, it returns a pointer to an empty keyboard description structureeVive _speteld

will have been initialized t&XkbUseCoreKbd . You may then either fill in the structure
components or use Xkb routines to obtain values for the structure components from a key-
board device.

February 5, 1996 Library Version 1.0/Document Revision 1.0 28

The X Keyboard Extension 6 Complete Keyboard Description

To destroy either an entire XkbDescRec or just some of its members, uskbFreeKey-

board.

void XkbFreeKeyboard(xkb, which, free_all
XkbDescPtr xkby /* keyboard description with components to free */
unsigned int which /* mask selecting components to free */
Bool free_alt [* True => free all components amxitb*/

XkbFreeKeyboardrees the components xitb specified bywhichand sets the corre-
sponding values thlULL If free_allis True , XkbFreeKeyboardrees every nomNULL
component okkband then frees theb structure itself.

February 5, 1996 Library Version 1.0/Document Revision 1.0 29

The X Keyboard Extension 7 Virtual Modifiers

7

7.1

7.2

Virtual Modifiers

The core protocol specifies that certain keysyms, when bound to modifiers, affect the rules
of keycode to keysym interpretation for all keys; for example, wheNuhe Lock key-

sym is bound to some modifier, that modifier is used to select between shifted and
unshifted state for the numeric keypad keys. The core protocol does not provide a conve-
nient way to determine the mapping of modifier bits (in partiodiaal throughMod5) to
keysyms such asum_Lock andMode_switch. Using the core protocol only, a client
application must retrieve and search the modifier map to determine the keycodes bound to
each madifier, and then retrieve and search the keyboard mapping to determine the key-
syms bound to the keycodes. It must repeat this process for all modifiers whenever any
part of the modifier mapping is changed.

Xkb alleviates these problems by defining virtual modifiers. In addition to the eight core
modifiers, referred to as tlmeal modifiers Xkb provides a set of sixteen namedual
modifiers Each virtual modifier can be bound to any set of the real modigéifs (,

Lock , Control andMod1-Modb).

The separation of function from physical modifier bindings makes it easier to specify
more clearly the intent of a binding. X servers do not all assign modifiers the same way —
for exampleNum_Lock might be bound tMod2 for one vendor and tdod4 for another.

This makes it cumbersome to automatically remap the keyboard to a desired configuration
without some kind of prior knowledge about the keyboard layout and bindings. With

XKB, applications can use virtual modifiers to specify the desired behavior, without
regard for the actual physical bindings in effect.

Virtual Modifier Names and Masks

Virtual modifiers are named by converting their string name to Atol and storing the

Atom in thenames.vmodarray in anXkbDescRec structure (see section 6.1). The posi-
tion of a name Atom in theames.vmodarray defines the bit position used to represent

the virtual modifier, and also the index used when accessing virtual modifier information
in arrays: the name in the i-th (O relative) entrpafes.vmodss the i-th virtual modifier,
represented by the mask (1<<i). Throughout Xkb, various functions have a parameter
which is a mask representing virtual modifier choices. In each case, the i-th bit (0 relative)
of the mask represents the i-th virtual modifier.

To set the name of a virtual modifier, cdkbSetNamesisingXkbVirtualModNames-
Mask in whichand the name in thé&kbargument; to retrieve indicator names, ¥&bGet-
Names These functions are discussed in Chapter 18.

Modifier Definitions

An Xkb modifier definitiorenumerates a collection of real and virtual modifiers but does
not in itself bind those modifiers to any particular key or to each other. Modifier defini-
tions are included in a number of structures in the keyboard description to define the col-
lection of modifiers that affect or are affected by some other entity. A modifier definition

is only relevant in the context of some other entity such as an indicator map, a control, or a
key type. (See sections 8.2.2, 10.8 and 15.2.)

typedef struct _XkbMods {
unsigned char mask; /* real_mods | vmods mapped to real modifiers */
unsigned char real_mods; /* real modifier bits */

February 5, 1996 Library Version 1.0/Document Revision 1.0 30

The X Keyboard Extension 7 Virtual Modifiers

7.3

7.4

unsigned short vmods; [* virtual modifier bits */
} XkbModsRec,*XkbModsPtr;

An Xkb modifier definition consists of a set of bit masks corresponding to the eight real
modifiers (eal_mod$; a similar set of bitmasks corresponding to the 16 named virtual
modifiers mod3; and an effective maskn@sh. The effective mask represents the set of
all real modifiers which can logically be set either by setting any of the real modifiers or
by setting any of the virtual modifiers in the definitiomaskis derived from the real and
virtual modifiers and should never be explicitly changed — it contains all of the real mod-
ifiers specified in the definitiorréal_mod$ plusany real modifiers that are bound to the
virtual modifiers specified in the definitionrfiod3. The binding of the virtual modifiers

to real modifiers is exterior to the modifier definition. Xkb automatically recomputes the
mask field of modifier definitions as necessary. Whenever you access a modifier defini-
tion which has been retrieved using an Xkb library function, the mask field will be correct
for the keyboard mapping of interest.

Binding Virtual Modifiers to Real Modifiers

The binding of virtual modifiers to real modifiers is defined bys@erer.vmodsarray in

an XkbDescRec structure. Each entry contains the real modifier bits which are bound to
the virtual modifier corresponding to the entry. The overall relationship of fields dealing
with virtual modifiers in the server keyboard description are shown in Figure 16.2 on page
165.

Virtual Modifier Key Mapping

Xkb maintains avirtual modifier mappingwhich lists the virtual modifiers associated

with, or bound to, each key. The real modifiers bound to a virtual modifier always include
all of the modifiers bound to any of the keys that specify that virtual modifier in their vir-
tual modifier mapping. Theerver.vmodmaprray indicates which virtual modifiers are
bound to each key; each entry is a bitmask for the virtual modifier bitserter.vmod-
maparray is indexed by keycode.

Thevmodmapmndvmodsmembers of the server map are the “master” virtual modifier
definitions. Xkb automatically propagates any changes to these fields to all other fields
that use virtual modifier mappings (see section 16.4 on page 164).

For example, iMod3is bound to thélum_Lock key by the core protocol modifier map-
ping, and théNumLock virtual modifier is bound to thelyum_Lock key by the virtual
modifier mappingMod3is added to the set of modifiers associated WitimLock.

The virtual modifier mapping is normally updated whenever actions are automatically
applied to symbols (see section 16.4 for details) and few applications should need to
change the virtual modifier mapping explicitly.

Call XkbGetMapsee section 14.2) to get the virtual modifiers from the server oxkiadl
GetVirtualMods(see section 16.4.1) to update a local copy of the virtual modifiers bind-
ings from the server. To set the binding of a virtual modifier to a real modifier, call
XkbSetMagsee section 14)3

February 5, 1996 Library Version 1.0/Document Revision 1.0 31

The X Keyboard Extension 7 Virtual Modifiers

741

7.5

7.6

To determine the mapping of virtual modifiers to core X protocol modifiersXkis¥ir-
tualModsToReal

Bool XkbVirtualModsToReal (xkb, virtual_mask, mask_rfyn

XkbDescPtr xkby [* keyboard description for input device */
unsigned int virtual_mask /* virtual modifier mask to translate */
unsigned int * mask_rtrn /* backfilled with real modifiers */

If the keyboard description defined kigbincludes bindings for virtual modifierXkbVir-
tualModsToRealises those bindings to determine the set of real modifiers that correspond
to the set of virtual modifiers specifiedvirtual_mask Thevirtual_maskparameter is a

mask specifying the virtual modifiers to translate; the i-th bit (O relative) of the mask rep-
resents the i-th virtual modifier. thask_rtrnis nonNULL, XkbVirtualModsToRedback-

fills it with the resulting real modifier mask. If the keyboard descriptiatkindoes not

include virtual modifier bindings<kbVirtualModsToRealeturnsFalse , otherwise it
returnsTrue .

Note Itis possible for a local (client-side) keyboard description Xkiigparameter) to not
contain any virtual modifier information (simply because the client has not requested
it) while the server’s corresponding definition may contain virtual modifier informa-
tion.

Inactive Modifier Sets

An unbound virtual modifier is one which is not bound to any real modifier
(server>vmods$virtual_modifier_index] is zero).

Some Xkb operations ignore modifier definitions in which the virtual modifiers are
unbound. Consider this example:

if (state matches {Shift}) Do OneThing;
if (state matches {Shift+NumLock}) Do Another;

If the NumLock virtual modifier is not bound to any real modifiers, the effective masks for
these two cases are identical (that is, contain 8hily). When it is essential to distin-
guish between OneThing and Another, Xkb considers only those modifier definitions for
which all virtual modifiers are bound.

Conventions

The Xkb extension does not require any specific virtual modifier names. However, every-
one benefits if the same names are used for common modifiers. The following names are
suggested:

NumLock
ScrollLock
Alt

Meta

AltGr
LevelThree

Example

If the 2nd (O-relative) entry inames.vmodsontains the Atom for “NumLock”, then 0x4
(1<<2) is the virtual modifier bit for thidumLock virtual modifier. Ifserver.vmodg]

February 5, 1996 Library Version 1.0/Document Revision 1.0 32

The X Keyboard Extension 7 Virtual Modifiers

containdViod3Mask, then theNumLock virtual modifier is bound to th®lod3 real modi-
fier.

A virtual modifier definition for this example would have:

real_mods =0
vmods = 0x4 (NumLock named virtual modifier)
mask = 0x20 (Mod3Mask)

Continuing the above example, if the keyboard hdsma_Lock keysym bound to the key
with keycode 14, and tidumLock virtual modifier is bound to this kegerver.vmod-
mag14] contains 0x4.

Finally, if the keyboard also used the r®&id1 modifier for numeric lock operations, the
modifier definition below would represent the situation where either the key bound to
Mod1 or theNumLock virtual modifier could be used for this purpose:

real_mods = 0x8 (Mod1Mask)
vmods = 0x4 (NumLock named virtual modifier)
mask = 0x28 (Mod1Mask | Mod3Mask)

February 5, 1996 Library Version 1.0/Document Revision 1.0 33

The X Keyboard Extension 8 Indicators

8

8.1

8.2

8.2.1

Indicators

Although the core X implementation supports up to 32 LEDs on an input device, it does
not provide any linkage between the state of the LEDs and the logical state of the input
device. For example, most keyboards ha@GapsLock LED, but X does not provide a
mechanism to make the LED automatically follow the logical state afdhsLock key.

Furthermore, the core X implementation does not provide clients with the ability to deter-
mine what bits in theed_masKield of theXKeyboardState map to the particular LEDs

on the keyboard. For example, X does not provide a method for a client to determine what
bit to set in théed_maskKield to turn on thescroll LockLED, or if the keyboard even has
aScroll Lock LED.

Xkb provides indicator names and programmable indicators to help solve these problems.
Using Xkb, clients can determine the names of the various indicators, determine and con-
trol the way that the individual indicators should be updated to reflect keyboard changes,
and determine which of the 32 keyboard indicators reported by the protocol are actually
present on the keyboard. Clients may also request immediate notification of changes to the
state of any subset of the keyboard indicators, which makes it straightforward to provide
an on-screen “virtual” LED panel. This chapter describes Xkb indicators and the routines
used for manipulating them.

Indicator Names

Xkb provides the capability of symbolically naming indicators. Xkb itself doesn’t use

these symbolic names for anything; they are only there to help make the keyboard descrip-
tion comprehensible to humans. To set the names of specific indicatokslzadtNames

as discussed in Chapter 18. Then set the map M&in§etMapsee section 14.3) otkb-
SetNamedIndicatgibelow). To retrieve indicator names, célbGetNamegChapter 18).

Indicator Data Structures

Use the indicator description recoxkbindicatorRec , and its indicator map,
XkbindicatorMapRec , to inquire about and control most indicator properties and
behaviors.

XkbIndicatorRec

The description for all the Xkb indicators is held in indicatorsfield of the complete
keyboard description (see Chapter 6), which is defined as follows:

#define XkbNumindicators 32

typedef struct {
unsigned long phys_indicators; /* LEDs existence */
XkblndicatorMapRec maps[XkbNumindicators]; /* indicator maps */

} XkbIndicatorRec,*XkblIndicatorPtr;

This structure contains thpdhys_indicatordield, which relates some information about
the correspondence between indicators and physical LEDs on the keyboard, and an array
of indicatormaps one map per indicator.

Thephys_indicatordield indicates which indicators are bound to physical LEDs on the
keyboard; if a bit is set iphys_indicatorsthen the associated indicator has a physical

February 5, 1996 Library Version 1.0/Document Revision 1.0 34

The X Keyboard Extension 8 Indicators

LED associated with it. This field is necessary because some indicators may not have cor-
responding physical LEDs on the keyboard. For example, most keyboards have an LED
for indicating the state afapsLock , but most keyboards do not have an LED that indi-
cates the current group. Becapsgs_indicatorglescribes a physical characteristic of the
keyboard, you cannot directly change it under program control. However, if a client pro-
gram loads a completely new keyboard descriptiorXikiaGetKeyboardByNamer if a

new keyboard is attached and the X implementation nopbss, indicatorchanges if

the indicators for the new keyboard are different.

8.2.2 XkbIndicatorMapRec

Each indicator has its own set of attributes that specify if clients can explicitly set its state
and if it tracks the keyboard state. The attributes of each indicator are heldnagbe
array, which is an array obindicatorRec structures:

typedef struct {
unsigned char flags; /* how the indicator can be changed */
unsigned char which_groups; /* match criteria for groups */
unsigned char groups; /* which keyboard groups the indicator watches */
unsigned char which_mods; /* match criteria for modifiers */
XkbModsRec mods; /* which modifiers the indicator watches */
unsigned int ctrls; [* which controls the indicator watches */

} XkbIndicatorMapRec, *XkbIndicatorMapPtr;
This indicator map specifies for each indicator:

The conditions under which the keyboard modifier state affects the indicator.

The conditions under which the keyboard group state affects the indicator.

The conditions under which the state of the boolean controls affects the indicator.
The effect (if any) of attempts to explicitly change the state of the indicator using the
functionsXkbSetControlsr XChangeKeyboardControl

For more information on the effects of explicit changes to indicators and the relationship
to the indicator map, see section 8.4.1 on page 42.

XkbIndicatorMapRec flags field

Theflagsfield specifies the conditions under which the indicator can be changed and the
effects of changing the indicator. The valid valuedlfays and their effects are shown in
Table 8.1.

Table 8.1 XkbIndicatorMapRec flags Field

Value Effect
XkbIM_NoExplicit (1L<<7) Client applications cannot change the state of the indicator.

XkbIM_NoAutomatic (1L<<6) Xkb does not automatically change the value of the indicator
based upon a change in the keyboard state, regardless of the
values for the other fields of the indicator map.

XkbIM_LEDDriveskB (1L<<5) A client application changing the state of the indicator causes
the state of the keyboard to change.

Note that ifXkbIM_NoAutomatic is not set, by default the indicator follows the key-
board state.

February 5, 1996 Library Version 1.0/Document Revision 1.0 35

The X Keyboard Extension 8 Indicators

If XkbIM_LEDDriveskB is set ancKkbIM_NoEXxplicit is not, and if you call a function
which updates the server’s image of the indicator map (susklx®etindicatorMar
XkbSetNamedindicatprXkb changes the keyboard state and controls to reflect the other
fields of the indicator map, as described in the remainder of this section. If you attempt to
explicitly change the value of an indicator for whikbIM_LEDDriveskB is absent or

for which XkbIM_NoExplicit Is present, keyboard state or controls are unaffected.

For example, a keyboard designer may want to mak€apsl.ock LED controllable

only by the server, but allow ttgzroll Lock LED to be controlled by client applications.
To do so, the keyboard designer could sediti®#M_NoExplicit flag for the

CapsLock LED, but not set it for th&croll LockLED. Or, the keyboard designer may
wish to allow theCapsLock LED to be controlled by both the server and client applica-
tions, and also have the server to automatically chandeaitst.ock modifier state
whenever a client application changes@apsLock LED. To do so, the keyboard
designer would not set thékbIM_NoEXxplicit flag, but would instead set the
XkbIM_LEDDriveskB flag.

The remaining fields in the indicator map specify the conditions under which Xkb auto-
matically turns an indicator on or off (onlyXkbIM_NoAutomatic is not set). If these
conditions match the keyboard state, Xkb turns the indicator on. If the conditions do not
match, Xkb turns the indicator off.

XkbIndicatorMapRec which_groups and groups fields

Thewhich_groupsand thegroupsfields of an indicator map determine how the keyboard
group state affects the corresponding indicator.wWhieh_groupdield controls the inter-
pretation ofgroupsand may contain any one of the following values:

#define XkbIM_UseNone 0

#define XkbIM_UseBase (1L << 0)
#define XkbIM_UseLatched (1L << 1)
#define XkbIM_UseLocked (AL << 2)

#define XkbIM_UseEffective (AL << 3)
#define XkbIM_UseAnyGroup XkbIM_UseLatched | XkbIM_UseLocked |
XkbIM_UseEffective

Thegroupsfield specifies what keyboard groups an indicator watches and is the bitwise
inclusive OR of the following valid values:

#define XkbGrouplMask (1<<0)
#define XkbGroup2Mask (1<<1)
#define XkbGroup3Mask (1<<2)
#define XkbGroup4Mask (1<<3)

#define XkbAnyGroupMask (1<<7)
#define XkbAllGroupsMask (Oxf)

February 5, 1996 Library Version 1.0/Document Revision 1.0 36

The X Keyboard Extension 8 Indicators

If XkbIM_NoAutomatic is not set (the keyboard drives the indicator), the effect of
which_groupsandgroupsis shown in Table 8.2.

Table 8.2 XkblIndicatorMapRec which_groups and groups, Keyboard Drives Indicator

which_groups Effect
XkbIM_UseNone Theyroupsfield and the current keyboard group state are ignored.
XkbIM_UseBase ligroupsis non-zero, the indicator is lit whenever the base keyboard

group is non-zero. lgroupsis zero, the indicator is lit whenever the
base keyboard group is zero.

XkbIM_UseLatched Igroupsis non-zero, the indicator is lit whenever the latched keyboard
group is non-zero. roupsis zero, the indicator is lit whenever the
latched keyboard group is zero.

XkbIM_UselLocked Th@roupsfield is interpreted as a mask. The indicator is lit when the
current locked keyboard group matches one of the bits that are set in
groups

XkbIM_UseEffective Thegroupsfield is interpreted as a mask. The indicator is lit when the
current effective keyboard group matches one of the bits that are set in
groups

The effect ofwhich_groupsandgroupswhen you change an indicator for which
XkbIM_LEDDriveskB s set (the indicator drives the keyboard) is shown in Table 8.3.
The “New State” column refers to the new state to which you set the indicator.

Table 8.3 XkbIndicatorMapRec which_groups and groups, Indicator Drives Keyboard

which_groups New State Effect on Keyboard Group State

XkbIM_UseNone On or Off No effect

XkbIM_UseBase On or Off No effect

XkbIM_UseLatched On Thgroupsfield is treated as a group mask. The keyboard

group latch is changed to the lowest numbered group speci-
fied ingroups if groupsis empty, the keyboard group latch is
changed to zero.

XkbIM_UseLatched Off Th@roupsfield is treated as a group mask. If the indicator is
explicitly extinguished, keyboard group latch is changed to
the lowest numbered group not specifiednoups if groups
is zero, the keyboard group latch is set to the index of the
highest legal keyboard group.

XkbIM_UseLocked or On If thegroupsmask is empty, group is not changed, otherwise
XkbIM UseEffective the locked keyboard group is changed to the lowest num-
- bered group specified groups
XkbIM_UselLocked or Off Locked keyboard group is changed to the lowest numbered
XkbIM UseEffective group that is not specified in theoupsmask, or tdGroupl
- if the groupsmask contains all keyboard groups.

XkbiIndicatorMapRec which_mods and mods fields

Themodsfield specifies what modifiers an indicator watches. iftoglsfield is an Xkb
modifier definition,XkbModsRec, as described in section 7.2, which can specify both real
and virtual modifiers. Thenodsfield takes effect even if some or all of the virtual indica-
tors specified imodsare unbound. To specify the mods field, in general, assign the mod-
ifiers of interest tanods.real_modand the virtual modifiers of interestit@ods.vmods

You can disregard thmods.maskield unless your application needs to interpret the indi-
cator map directly (that is, to simulate automatic indicator behavior on it's own). Rela-

February 5, 1996 Library Version 1.0/Document Revision 1.0 37

The X Keyboard Extension 8 Indicators

tively few applications need to do so, but if you find it necessary, you can either read the
indicator map back from the server after you update it (the server automatically updates
the mask field whenever any of the real or virtual modifiers are changed in the modifier
definition) or you can caKkbVirtualModsToReab determine the proper contents for the
mask field, assuming that tié&bDescRec contains the virtual modifier definitions.

which_modspecifies what criteria Xkb uses to determine a match with the corresponding
modsfield by specifying one or more components of the Xkb keyboard state. If
XkbIM_NoAutomatic is not set (the keyboard drives the indicator), the indicator is lit
whenever any of the modifiers specified in thaskfield of themodsmodifier definition

are also set in any of the current keyboard state components specifitacchbymods
Remember that thmaskfield is comprised of all of the real modifiers specified in the def-
inition plus any real modifiers that are bound to the virtual modifiers specified in the defi-
nition. (See Chapter 5 for more information on the keyboard state and Chapter 7 for more
information on virtual modifiers.) Use a bitwise inclusive OR of the following values to
compose a value favhich_mods

#define XkbIM_UseNone 0

#define XkbIM_UseBase (1L << 0)

#define XkbIM_UseLatched (1L <<1)

#define XkbIM_UseLocked (1L << 2)

#define XkbIM_UseEffective (1L << 3)

#define XkbIM_UseCompat (1L << 4)

#define XkbIM_UseAnyMods XkbIM_UseBase | XkbIM_UseLatched | XkbIM_UseLocked

| XkbIM_UseEffective | XkbIM_UseCompat

If XkbIM_NoAutomatic is not set (the keyboard drives the indicator), the effect of
which_modsandmodsis shown in Table 8.4

Table 8.4 XkbIndicatorMapRec which_mods and mods, Keyboard Drives Indicator

which_mods Effect on Keyboard Modifiers
XkbIM_UseNone The mods field and the current keyboard modifier state are ignored
XkbIM_UseBase The indicator is lit when any of the modifiers specified imaséfield

of modsare on in the keyboard base st#tdaoth mods.real_mods
andmods.vmodare zero, the indicator is lit when the base key-
board state contains no modifiers.

XkbIM_UselLatched The indicator is lit when any of the modifiers specified imaiséfield
of modsare latchedlf both mods.real_modandmods.vmodare
Izer%, tge indicator is lit when none of the modifier keys are
atched.

XkbIM_UselLocked The indicator is lit when any of the modifiers specified imdskfield
of modsare lockedlIf both mods.real_modandmods.vmodare
zero, the indicatois lit when none of the modifier keys are locked.

XkbIM_UseEffective The indicator is lit when any of the modifiers specified imtmskfield
of modsare in the effective keyboard staieboth mods.real_mods
andmods.vmodare zero, the indicator is lit when the effective
keyboard state contains no modifiers.

XkbIM_UseCompat The indicator is lit when any of the modifiers specified iméséfield
of modsare in the keyboard compatibility staleboth
mods.real_modandmods.vmodare zero, the indicator is lit
whenthe keyboard compatibility state contains no modifiers.

February 5, 1996 Library Version 1.0/Document Revision 1.0 38

The X Keyboard Extension 8 Indicators

8.3

The effect on the keyboard modifierswafich_modsndmodswhen you change an indi-
cator for whichxkblM_LEDDriveskB is set (the indicator drives the keyboard) is shown

in Table 8.5. The “New State” column refers to the new state to which you set the indica-
tor.

Table 8.5 XkbIndicatorMapRec which_mods and mods, Indicator Drives Keyboard

which_mods New State Effect on Keyboard Modifiers

XkbIM_UseNone or On or Off No Effect
XkbIM_UseBase

XkbIM_Uselatched On Any modifiers specified in thaskfield of modsare
added to the latched modifiers.

XkbIM_UseLatched Off Any maodifiers specified in theskfield of modsare
removed from the latched modifiers.

XkbIM_UseLocked, On Any modifiers specified in theaskfield of modsare

XkbIM_UseCompat, or added to the locked modifiers.

XkbIM_UseEffective

XkbIM_UselLocked Off Any modifiers specified in theaskfield of modsare

removed from the locked modifiers.

XkbIM_UseCompat or Off Any modifiers specified in theaskfield of modsare
XkbIM_UseEffective removed from both the locked and latched modifiers.

XkblndicatorMapRec ctrls field

Thectrls field specifies what controls (see Chapter 10) the indicator watches and is com-
posed using the bitwise inclusive OR of the following values:

#define XkbRepeatKeysMask (1L << 0)
#define XkbSlowKeysMask (AL << 1)
#define XkbBounceKeysMask (AL << 2)
#define XkbStickyKeysMask (1L << 3)
#define XkbMouseKeysMask (1L << 4)
#define XkbMouseKeysAccelMask (1L << 5)
#define XkbAccessXKeysMask (1L << 6)

#define XkbAccessXTimeoutMask (1L << 7)
#define XkbAccessXFeedbackMask (1L << 8)

#define XkbAudibleBellMask (1L << 9)
#define XkbOverlaylMask (1L << 10)
#define XkbOverlay2Mask (1L << 11)

#define XkbAllBooleanCtrisMask (Ox00001FFF)
Xkb lights the indicator whenever any of the boolean controls specifidsns enabled.

Getting Information About Indicators

Xkb allows applications to obtain information about indicators using two different meth-
ods. The first method, which is similar to the core X implementation, uses a mask to spec-
ify the indicators. The second method, which is more suitable for applications concerned
with inter-operability, uses indicator names. The correspondence between the indicator
name and the bit position in masks is as follows: one of the parameters returng#lrom
GetNamedIndicatoris an index which is the bit position to use in any function call which

February 5, 1996 Library Version 1.0/Document Revision 1.0 39

The X Keyboard Extension 8 Indicators

8.3.1

8.3.2

8.3.3

requires a mask of indicator bits, as well as the indicator’s index inXkbtedica-
torRec array of indicator maps.

Getting Indicator State

Because the state of the indicators are relatively volatile, the keyboard description does
not hold the current state of the indicators. To obtain the current state of the keyboard indi-
cators, calXkbGetIndicatorState

StatusXkbGetlndicatorState (display device_specstate_returi
Display * display [* connection to the X server */
unsigned int device_spec /* device id, orXkbUseCoreKbd */
unsigned int state_return /* backfilled with a mask of the indicator state */

XkbGetIndicatorStatgueries thalisplayfor the state of the indicators on the device spec-
ified by thedevice_sped-or each indicator that is “turned on” on the device, the associ-
ated bit is set istate_returnIf a compatible version of the Xkb extension is not available
in the serveXkbGetindicatorStateeturns éBadMatch error. Otherwise, it sends the
request to the X server, places the state of the indicatorstat& returnand returns
Success . Thus the value reported bikbGetindicatorStates identical to the value
reported by the core protocol.

Getting Indicator Information by Index

To get the map for one or more indicators, using a mask to specify the indicatotkpeall
GetIndicatorMap

StatusXkbGetlndicatorMap (dpy, which desg
Display * dpy; /* connection to the X server */
unsigned int whichy ~ /* mask of indicators for which maps should be returned */
XkbDescPtr des¢ /* keyboard description to be updated */

XkbGetIndicatorMapmbtains the maps from the server for only those indicators specified
by thewhichmask, and copies the values into the keyboard description specitieddy

If the indicatorsfield of thedescparameter iNULL, XkbGetIndicatorMapallocates and
initializes it.

XkbGetlndicatorMagan generatBadAlloc , BadLength , BadMatch , andBadimple-
mentation errors.

To free the indicator maps, ux&bFreelndicatorMapgsee section 8.6).

Getting Indicator Information by Name

Xkb also allows applications to refer to indicators by name.XdddlGetNamewo get the
indicator names (see Chapter 18). Using names eliminates the need for hard-coding bit-
mask values for particular keyboards. For example, instead of using vendor specific con-
stants likeWSKBLed _ScrollLock mask on Digital workstations or

XLED_SCROLL_LOCHKnN Sun workstations, you can instead ¥&tbGetNamedIndicator

to lookup information on the indicator named “Scroll Lock.”

February 5, 1996 Library Version 1.0/Document Revision 1.0 40

The X Keyboard Extension 8 Indicators

8.4

8.4.1

Call XkbGetNamedindicatdo look up the indicator map and other information for an
indicator by name.

Bool XkbGetNamedIndicator(dpy dev_specname ndx_rtrn state_rtrn map_rtrn real_rtrn)

Display * dpy; [* connection to the X server */

unsigned int device_sped* keyboard device id, axkbUseCoreKbd */

Atom name /* name of the indicator to be retrieved */

int * ndx_rtrr /* backfilled with the index of the retrieved indicator */

Bool * state_rtrn /* backfilled with the current state of the retrieved indicator */
XkbIndicatorMapPtmap_rtrn/* backfilled with the mapping for the retrieved indicator */
Bool * real_rtrn; /* backfilled withTrue if the named indicator is real (physical) */

If the device specified bglevice_spebas an indicator namedme XkbGetNamedindi-
cator returnsTrue and populates the rest of the parameters with information about the
indicator. OtherwiseXkbGetNamedIndicataeturnsFalse .

Thendx_rtrnfield returns the 0-based index of the named indicator. This index is the bit
position to use in any function call which requires a mask of indicator bits, as well as the
indicator’s index into th&kblndicatorRec array of indicator mapstate_rtrnreturns

the current state of the named indicaioué = on,False = off). map_rtrnreturns the
indicator map for the named indicator. In addition, if the indicator is mapped to a physical
LED, thereal_rtrn parameter is set ffrue .

Each of the “rtrn” arguments is optional; you can paddLL for any unneeded ftrn”
arguments.

XkbGetNamedIndicataran generatBadAtom andBadimplementation errors.

Changing Indicator Maps and State

Just as you can get the indicator map using a mask or using an indicator name, so you can
change it using a mask or a name.

Note You cannot change thghys_indicatorgield of the indicators structure. The only
way to change thphys_indicatordield is to change the keyboard map.

There are two ways to make changes to indicator maps and state: either change a local
copy of the indicator maps and cdkbSetindicatorMajpr XkbSetNamedIndicatpor, to
reduce network traffic, use afkbindicatorChangesRec structure and call
XkbChangelndicators

Effects of Explicit Changes on Indicators

This section discusses the effects of explicitly changing indicators depending upon differ-
ent settings in the indicator map. See Table 8.3 on page 38 and Table 8.5 on page 40 for
information on the effects of the indicator map fields when explicit changes are made.

If XkbIM_LEDDriveskB is set anckkbIM_NoEXxplicit is not, and if you call a function
which updates the server’s image of the indicator map (susklx®etindicatorMajr
XkbSetNamediIndicatprXkb changes the keyboard state and controls to reflect the other
fields of the indicator map. If you attempt to explicitly change the value of an indicator for
which XkbIM_LEDDriveskB is absent or for whicKkbIM_NoExplicit IS present,
keyboard state or controls are unaffected.

February 5, 1996 Library Version 1.0/Document Revision 1.0 41

The X Keyboard Extension 8 Indicators

8.4.2

If neitherXkbIM_NoAutomatic nor XkbIM_NoEXxplicit is set in an indicator map,

Xkb honors any request to change the state of the indicator, but the new state might be
immediately superseded by automatic changes to the indicator state if the keyboard state
or controls change.

The effects of changing an indicator which drives the keyboard are cumulative; it is possi-
ble for a single change to affect keyboard group, modifiers and controls simultaneously.

If you change an indicator for which both tkikbIM_LEDDriveskB and

XkbIM_NoAutomatic flags are specified, Xkb applies the keyboard changes specified in
the other indicator map fields and changes the indicator to reflect the state that was explic-
itly requested. The indicator remains in the new state until it is explicitly changed again.

If the XkbIM_NoAutomatic flag is not set an¥kblM _LEDDriveskB is set, Xkb applies

the changes specified in the other indicator map fields and sets the state of the indicator to
the values specified by the indicator map. Note that it is possible in this case for the indi-
cator to end up in a different state than the one that was explicitly requested. For example,
Xkb does not extinguish an indicator witthich_modof XkbIM_UseBase andmodsof

Shit if, at the time Xkb processes the request to extinguish the indicator, onesbifthe

keys is physically depressed.

If you explicitly light an indicator for whiciXkbIM_LEDDriveskB is set, Xkb enables all

of the boolean controls specified in tttes field of its indicator map. Explicitly extin-
guishing such an indicator causes Xkb to disable all of the boolean controls specified in
ctrls.

Changing Indicator Maps by Index

To update the maps for one or more indicators, first modify a local copy of the keyboard
description, then us€kbSetindicatorMapo download the changes to the server:

Bool XkbSetIndicatorMap (dpy, which desg
Display * dpy; [* connection to the X server */
unsigned int whiclt /* mask of indicators to change */
XkbDescPtr desg /* keyboard description from which the maps are taken */

For each bit set in thehichparameterXkbSetindicatorMagends the corresponding
indicator map from theescparameter to the server.

February 5, 1996 Library Version 1.0/Document Revision 1.0 42

The X Keyboard Extension 8 Indicators

8.4.3

8.4.4

Changing Indicator Maps by Name
XkbSetNamedIndicataan do several related things:

Name an indicator if it is not already named
Toggle the state of the indicator

Set the indicator to a specified state

Set the indicator map for the indicator

Bool XkbSetNamedIndicator(dpy, device_speamame change_state, statereate_newmap

Display * dpy, [* connection to the X server */

unsigned int device_spec /* device id, orXkbUseCoreKbd */

Atom name /* name of the indicator to change */

Bool change_statg* whether to change the indicator state or not */

Bool state /* desired new state for the indicator */

Bool create_new /* whether a new indicator with the specified name
should be created when necessary */

XkblIndicatorMapPtr mag /* new map for the indicator */

If a compatible version of the Xkb extension is not available in the séiklegetNamed-
Indicator returnsFalse . Otherwise, it sends a request to the X server to change the indi-
cator specified bypameand returnJrue .

If change_statés True , and the optional parametstate is notNULL, XkbSetNamed-
Indicator tells the server to change the state of the named indicator to the value specified
by state

If an indicator with the name specified bgmedoes not already exist, tbeeate _new
parameter tells the server whether it should create a new named indicatatdf news

True , the server finds the first indicator that doesn’t have a name and gives it the name
specified byname

If the optional parametemap is notNULL, XkbSetNamedIndicataells the server to
change the indicator’'s map to the values specifiedap

XkbSetNamedIindicataan generatBadAtom andBadimplementation errors. In
addition, it can also generax&blindicatorStateNotify (see section 8.5XKkbIndi-
catorMapNotify , andXkbNamesNotify events (see section 18.5).

The XkbIndicatorChangesRec Structure

The XkblndicatorChangesRec identifies small modifications to the indicator map.
Use it with the functiorXkbChangelndicatort reduce the amount of traffic sent to the
server.

typedef struct _XkblndicatorChanges {
unsigned int state_changes;
unsigned int map_changes;
} XkbIndicatorChangesReg*XkbIndicatorChangesPtr;

Thestate_changeseld is a mask that specifies the indicators that have changed state, and
map_changes a mask that specifies the indicators whose maps have changed.

February 5, 1996 Library Version 1.0/Document Revision 1.0 43

The X Keyboard Extension 8 Indicators

To change indicator maps or state without passing the entire keyboard description, call
XkbChangelndicators

Bool XkbChangelndicators(dpy, xkb, changes, state

Display * dpy; /* connection to the X server */

XkbDescPtr xkby [* keyboard description from which names are to be
taken. */

XkblndicatorChangesPtichanges /* indicators to be updated on the server */

unsigned int state /* new state of indicators listed in

changes>state_change¥

XkbChangelndicatorsopies any maps specified Byangedrom the keyboard descrip-
tion, xkb, to the server specified lapy. If any bits are set in tretate_changeBeld of
changesXkbChangelndicatoralso sets the state of those indicators to the values speci-
fied in thestatemask. A 1 bit irstateturns the corresponding indicator on, a 0 bit turns it

off.
XkbChangelndicat@ can generat®adAtom andBadimplementation errors. In addi-
tion, it can also genera¥kbindicatorStateNotify andXkblndicatorMapNotify

events (see section 8.5).

8.5 Tracking Changes To Indicator State or Map

Whenever an indicator changes state, the server ¥&hbislicatorStateNotify
events to all interested clients. Similarly, whenever an indicator's map changes, the server
sendsxXkbindicatorMapNotify events to all interested clients.

To receiveXkbindicatorStateNotify events, calkkbSelectEveni{see section 4.3)
with both thebits_to_changandvalues_for_bitparameters containirkbindica-
torStateNotifyMask . To receiveXkbindicatorMapNotify events, calkkbSelect-
Eventswith XkbIndicatorMapNotifyMask

To receive events for only specific indicators, X&bSelectEventDetailSet the
event_typgarameteto XkbindicatorStateNotify or XkbIndicatorMapNo-

tify , and set both thieits_to_changandvalues_for_bitsletail parameters to a mask
where each bit specifies one indicator, turning on those bits which specify the indicators
for which you want to receive events.

Both types of indicator events use the same structure:
typedef struct _XkblIndicatorNotify {

int type; /* Xkb extension base event code */

unsigned long serial; I* X server serial number for event */

Bool send_event; /Jrue => synthetically generated */

Display * display; [* server connection where event generated */
Time time; /* server time when event generated */

int xkb_type; [* specifies state or map notify */

int device; I* Xkb device id, will not b&kbUseCoreKbd */
unsigned int changed; [* mask of indicators with new state or map */
unsigned int state; [* current state of all indicators */

} XkbIndicatorNotifyEvent ;

February 5, 1996 Library Version 1.0/Document Revision 1.0 44

The X Keyboard Extension 8 Indicators

8.6

xkb_types eitherxkbindicatorStateNotify or XkbIndicatorMapNotify :
depending upon whether the event kbkdicatorStateNotify event orkbindi-
catorMapNotify event.

Thechangedparameter is a mask that is the bitwise inclusive OR of the indicators that
have changed. If the event is of tydlindicatorMapNotify , changedreports the
maps that changed. If the event is of tyjbIndicatorStateNotify , changed

reports the indicators that have changed sstdteis a mask which specifies the current
state of all indicators, whether they have changed or not, foidbthdica-

torStateNotify andIndicatorMapNotify events.
When your client application receives eithefikdindicatorStateNotify event or
XkblndicatorMapNotify event, you can note the changes in a changes structure by

calling XkbNotelndicatorChanges
void XkbNotelndicatorChangeqold, new wanted

XkblIndicatorChangesPtr old; /* XkblIndicatorChanges structure to be updated */
XkblndicatorNotifyEvent * new /* event from which changes are to be copied */
unsigned int wanted /* which changes are to be noted */

Thewantedparameter is the bitwise inclusive ORX&bIndicatorMapMask and
XkbIndicatorStateMask . XkbNotelndicatorChangesopies any changes reported in
newand specified invantedinto the changes record specifieddig.

To update a local copy of the keyboard description with the actual values, pass the results
of one or more calls t§kbNotelndicatorChanges XkbGetindicatorChanges

StatusXkbGetlIndicatorChanges(dpy, xkh changesstatg

Display * dpy; [* connection to the X server */

XkbDescPtr xkby * keyboard description to hold the new values */
XkbIndicatorChangesPtichanges /* indicator maps/state to be obtained from the server */
unsigned int * state * backfilled with the state of the indicators */

XkbGetIndicatorChangesxamines thehangegparameter, pulls over the necessary infor-
mation from the server, and copies the results intakh&eyboard description. If any bits
are set in thetate_changefeld of changesXkbGetindicatorChangealso places the

state of those indicators state If theindicatorsfield of xkbis NULL, XkbGetIndicator-
Changesllocates and initializes it. To free timglicatorsfield, useXkbFreelndicators

(see section 8.6)

XkbGetIndicatorChangesan generatBadAlloc , Badimplementation andBad-
Match errors.

Allocating and Freeing Indicator Maps

Most applications do not need to directly allocateitickcatorsmember of the keyboard
description record (the keyboard description record is described in Chapter 6). If the need
arises, however, callkbAllocindicatorMaps.

StatusXkbAllocIindicatorMaps (xkb)
XkbDescPtr xkb; /* keyboard description structure */

Thexkb parameter must point to a valid keyboard description. If it doeskiAllocIndi-
catorMapsreturns eBadMatch error. OtherwiseXkbAllocindicatorMapsllocates and
initializes theindicatorsmember of the keyboard description record and retbuns

February 5, 1996 Library Version 1.0/Document Revision 1.0 45

The X Keyboard Extension 8 Indicators

cess . If XkbAllocindicatorMapsvas unable to allocate the indicators record, it reports a
BadAlloc error.

To free memory used by thedicatorsmember of arXkbDescRec structure, call
XkbFreelndicatorMaps.

void XkbFreelndicatorMaps (xkb)
XkbDescPtr xkb; /* keyboard description structure */

If the indicatorsmember of the keyboard description record pointed tkbys notNULL,
XkbFreelndicatorMaps$rees the memory associated with ith@icatorsmember ofkkhb.

February 5, 1996 Library Version 1.0/Document Revision 1.0 46

The X Keyboard Extension 9 Bells

9

9.1

Bells

The core X protocol only allows applications to explicitly sound the system bell with a
given duration, pitch, and volume. Xkb extends this capability by allowing clients to

attach symbolic names to bells, disable audible bells, and receive an event whenever the
keyboard bell is rung. For the purposes of this documenautiblebell is defined to be

the system bell, or the default keyboard bell, as opposed to any other audible sound gener-
ated elsewhere in the system.

You can ask to receivékbBellNotify events (see section 9.4) when any client rings
any one of the following:

* the default bell

 any bell on an input device that can be specified Ibglh classandbell_id pair

» any bell specified only by an arbitrary name (This is, from the server’s point of view,
merely a name, and not connected with any physical sound-generating device. Some
client application must generate the sound, or visual feedback, if any, that is associated
with the name.)

You can also ask to receix&bBellNotify events when the server rings the default bell
or if any client has requested events only (without the bell sounding) for any of the bell
types shown above.

You can disable audible bells on a global basis (to s&utibleBell control, see

Chapter 10). For example, a client that replaces the keyboard bell with some other audible
cue might want to turn off thaudibleBell control to prevent the server from also gen-
erating a sound and avoid cacophony. If you disable audible bells and request to receive
XkbBellNotify events, you can generate feedback different from the default bell.

You can, however, override tiAeidibleBell control, by calling one of the functions

that force the ringing of a bell in spite of the setting ofAbdibleBell control —Xkb-
ForceDeviceBelbr XkbForceBell(see section 9.3.3). In this case the server does not gen-
erate a bell event.

Just as some keyboards can produce keyclicks to indicate when a key is pressed or repeat-
ing, Xkb can provide feedback for the controls by using special beep codes. The
AccessXFeedback control is used to configure the specific types of operations which
generate feedback. See section 10.6.3 on page 64 for a discusaamessxXFeedback

control.

This chapter describes bell names, the routines used to generate named bells, and the
events the server generates for bells.

Bell Names

You can associate a name to an act of ringing a bell by converting the name to an Atom
and then using this name when you call the functions listed in this chapter. If an event is
generated as a result, the name is then passed to all other clients interested in receiving
XkbBellNotify events. Note that these are arbitrary names and there is no binding to

any sounds. Any sounds or other effects (such as visual bells on the screen) must be gener-
ated by a client application upon receipt of the bell event containing the name. There is no
default name for the default keyboard bell. The server does generate some predefined bells
for the AccessX controls (see section 10.6.3). These named bells are shown in Table 9.1;

February 5, 1996 Library Version 1.0/Document Revision 1.0 47

The X Keyboard Extension 9 Bells

the name is included in any bell event sent to clients that have requested toXkiseive
BellNotify events.

Table 9.1 Predefined Bells

Action Named Bell

Indicator turned on AX_IndicatorOn
Indicator turned off AX_IndicatorOff

More than one indicator changed state AX_IndicatorChange
Control turned on AX_FeatureOn

Control turned off AX_FeatureOff

More than one control changed state AX_FeatureChange
SlowKeys and BounceKeys about to be turned on or off AX_SlowKeysWarning
SlowKeys key pressed AX_SlowKeyPress
SlowKeys key accepted AX_SlowKeyAccept
SlowKeys key rejected AX_SlowKeyReject
Accepted SlowKeys key released AX_SlowKeyRelease
BounceKeys key rejected AX_BounceKeyReject
StickyKeys key latched AX_StickyLatch
StickyKeys key locked AX_StickyLock
StickyKeys key unlocked AX_StickyUnlock

9.2 Audible Bells

Using Xkb you can generate bell events which do not necessarily ring the system bell.
This is useful if you need to use an audio server instead of the system beep. For example,
when an audio client starts, it could disable the audible bell (the system bell) and then lis-
ten for XkbBellNotify events (see section 9.4). When it receivikiBellNotify

event, the audio client could then send a request to an audio server to play a sound.

You can control the audible bells feature by passingkidudibleBellMask to
XkbChangeEnabledContro{see section 10.1.1). If you sétbAudibleBellMask on,

the server rings the system bell when a bell event occurs. This is the default. If you set
XkbAudibleBellMask off and a bell event occurs, the server does not ring the system
bell unless you calkkbForceDeviceBelbr XkbForceBell(see section 9.3.3).

Audible bells are also part of the per-client auto-reset controls. For more information on
auto-reset controls, see section 10.1.2 on page 55.

9.3 Bell Functions
Use the functions described in this section to ring bells and to generate bell events.

The input extension has two types of feedbacks that can generate bells — bell feedback
and keyboard feedback. Some of the functions in this sectiorblefivelassandbell_id
parameters; set them as follows: Bell_classto BellFeedbackClass or KbdFeed-
backClass . A device can have more than one feedback of each tygeelsad to the
particular bell feedback dfell_classtype.

February 5, 1996 Library Version 1.0/Document Revision 1.0 48

The X Keyboard Extension 9 Bells

Table 9.2 shows the conditions that cause a bell to soundXébBelNotifyEvent to
be generated when a bell function is called.

Table 9.2 Bell Sounding and Bell Event Generating

Server sounds Server sends an

Function Called AudibleBell 2 bell XkbBellNotifyEvent
XkbDeviceBell On Yes Yes

XkbDeviceBell Off No Yes

XkbBell On Yes Yes

XkbBell Off No Yes
XkbDeviceBellEvent On or Off No Yes

XkbBellEvent On or Off No Yes
XkbDeviceForceBell On or Off Yes No

XkbForceBell On or Off Yes No

9.3.1 Generating Named Bells
To ring the bell on an X input extension device or the default keyboar&ktdlievice-

Bell.

Bool XkbDeviceBell(display, window, device_id, bell_class, bell_id, percent, nhame
Display * display [* connection to the X server */
Window window /* window for which the bell is generated, or None */

unsigned int device_spec /* device id, orXkbUseCoreKbd */
unsigned int bell_class /* X input extension bell class of the bell to be rung */

unsigned int bell_id; /* X input extension bell id of the bell to be rung */
int percent /* bell volume, from -100 to 100 inclusive */
Atom name /* a name for the bell, ddULL*/

Setpercentto be the volume relative to the base volume for the keyboard as described for
XBell

Note thatbell_classandbell_id indicate the bell to physically ringameis simply an
arbitrary moniker for the client application’s use.

To determine the current feedback settings of an extension input devic€GediHeed-
backControl See the X input extension documentation for more informatiotGaet-
FeedbackControhnd related data structures.

If a compatible keyboard extension is not present in the X setkbDeviceBellmmedi-
ately returnd=alse . Otherwise XkbDeviceBelfings the bell as specified for the display
and keyboard device, and retuiitge . If you have disabled the audible bell, the server
does not ring the system bell, although it does genebétbEellNotify event.

You can callXkbDeviceBelWithout first initializing the keyboard extension.

As a convenience routine, Xkb provides a function to ring the bell on the default key-

board:XkbBell.
Bool XkbBell (display, window, percent, naine
Display * display, [* connection to the X server */
Window window /* event window, or None*/
int percenf /* relative volume, which can range from -100 to 100 inclusive */
Atom name /* a bell name, oNULL*/

February 5, 1996 Library Version 1.0/Document Revision 1.0 49

The X Keyboard Extension 9 Bells

If a compatible keyboard extension isn’t present in the X sex¥BellcallsXBell with
the specifiedlisplayandpercent and returngalse . Otherwise XkbBellcalls XkbDevi-
ceBellwith the specifiedlisplay, window, percendndname adevice _speof XkbUseC-
oreKbd , abell_classof XkbDfitXIClass , and abell_id of XkbDfitXlld, and returns
True .

If you have disabled the audible bell, the server does not ring the system bell, although it
does generate XkbBellNotify event.

You can callXkbBellwithout first initializing the keyboard extension.

9.3.2 Generating Named Bell Events

Using Xkb, you can also generate a named bell event that does not ring any bell. This
allows you to do things such as generate events when your application starts.

For example, if an audio client listens for these types of bells, it can produce a “whoosh”
sound when it receives a named bell event to indicate a client just started. In this manner,
applications can generate start-up feedback and not worry about producing annoying
beeps if an audio server is not running.

To cause a bell event for an X input extension device or for the keyboard, without ringing
the corresponding bell, callkbDeviceBellEvent.

Bool XkbDeviceBellEven{display, window, device_spec, bell_class, bell_id, percent,)name
Display * display, /* connection to the X server */
Window window /* event window, or None*/
unsigned int device_spe¢* device id, orXkbUseCoreKbd */
unsigned int bell _class/* input extension bell class for the event */
unsigned int bell_id; /* input extension bell id for the event */
int percenf /* volume for the bell, which can range from -100 to 100 inclusive */
Atom name /* a bell name, oNULL*/

If a compatible keyboard extension isn’t present in the X sexdDeviceBellEvent
immediately returnf&alse . Otherwise XkbDeviceBellEverdauses aXkbBellNotify
event to be sent to all interested clients and reflnures. Setpercentto be the volume rel-
ative to the base volume for the keyboard as describe<Bieit.

In addition,XkbDeviceBellEvennhay generatétom protocol errors as well agb-
BellNotify events. You can callkbBellwithout first initializing the keyboard exten-
sion.

As a convenience routine, Xkb provides a function to cause a bell event for the keyboard
without ringing the bellXkbBellEvent.

Bool XkbBellEvent(display, window, percent, namne

Display * display [* connection to the X server */

Window window /* the event window, or None */

int percent [* relative volume, which can range from -100 to 100 inclusive */
Atom name /* a bell name, oNULL*/

If a compatible keyboard extension isn’t present in the X sexd@BellEventmmedi-
ately returng-alse . Otherwise XkbBellEventalls XkbDeviceBellEvenwith the speci-
fied display, window, percendindname adevice_speof XkbUseCoreKbd , abell_class

February 5, 1996 Library Version 1.0/Document Revision 1.0 50

The X Keyboard Extension 9 Bells

of XkbDfitXIClass , and abell_id of XkbDfltXlid, and returns whatkbDevice-
BellEventreturns.

XkbBellEvengenerates ZkbBellNotify event.

You can callXkbBellEventwithout first initializing the keyboard extension.

9.3.3 Forcing a Server-generated Bell

To ring the bell on any keyboard, overriding user preference settings for audible bells, call

XkbForceDeviceBell

Bool XkbForceDeviceBel(display, window, device_spec, bell_class, bell_id, peycent
Display * display [* connection to the X server */
Window window /* event window, or None */

unsigned int device_spec /* device id, orXkbUseCoreKbd */

unsigned int bell_class /* input extension class of the bell to be rung */

unsigned int bell_id; /* input extension id of the bell to be rung */

int percent /* relative volume, which can range from -100 to 100 inclusive */

If a compatible keyboard extension isn’'t present in the X sex¥bf-orceDeviceBell
immediately returngalse . Otherwise XkbForceDeviceBeliings the bell as specified
for the display and keyboard device, and retdime . Setpercentto be the volume rela-
tive to the base volume for the keyboard as describexiBel. There is namameparame-
ter becausXkbForceDeviceBeliloes not cause atkbBellNotify event.

You can callXkbBellwithout first initializing the keyboard extension.

To ring the bell on the default keyboard, overriding user preference settings for audible
bells callXkbForceBell

Bool XkbForceBell(display, percent)
Display * display, /* connection to the X server */
int percent /* volume for the bell, which can range from -100 to 100 inclusive */

If a compatible keyboard extension isn’t present in the X sexkéif-orceBellcallsXBell
with the specifiedlisplayandpercent and returngalse . Otherwise XkbForceBelkalls
XkbForceDeviceBelhith the specifiedlisplayandpercentdevice_speeXkbUseC-
oreKbd , bell_class= XkbDfitXIClass , bell_id = XkbDfitXlld, window= None, and
name= NULL, and returns whaXkbForceDeviceBelleturns.

XkbForceBeldoes not cause atkbBellNotify event.

You can callXkbBellwithout first initializing the keyboard extension.

9.4 Detecting Bells

Xkb generateXkbBellNotify events for all bells except for those resulting from calls
to XkbForceDeviceBelhndXkbForceBell To receivexkbBellNotify events under all
possible conditions, pa¥&bBellNotifyMask in both thebits_to_changeand
values_for_bitparameters t¥kbSelectEvenisee section 4.3).

The XkbBellNotify event has no event details. It is either selected or it is not. How-
ever, you can cakkbSelectEventDetailssing XkbBellNotify as theevent_typand
specifyingXkbAlBellNotifyMask in bits_to_changandvalues_for_bitsThis has

the same effect as a callX@ébSelectEvents

February 5, 1996 Library Version 1.0/Document Revision 1.0 51

The X Keyboard Extension 9 Bells

The structure for th&kbBellNotify event type contains:
typedef struct _XkbBellNotify {

int type; /* Xkb extension base event code */

unsigned long serial; I* X server serial number for event */

Bool send_event; /Jrue => synthetically generated */

Display * display; [* server connection where event generated */
Time time; /* server time when event generated */

int xkb_type; /*XkbBellNotify */

unsigned int device; /* Xkb device id, will not bébUseCoreKbd */
int percent; * requested volume as % of max */

int pitch; /* requested pitch in Hz */

int duration; * requested duration in microseconds */
unsigned int bell_class; /* X input extension feedback class */
unsigned int bell_id; /* X input extension feedback id */

Atom name; [* “name” of requested bell */

Window window; /* window associated with event */

Bool event_only; /*False ->the server did not produce a beep */

} XkbBellNotifyEvent ;

If your application needs to generate visual bell feedback on the screen when it receives a
bell event, use the window id in tié&bBellNotifyEvent , If present.

February 5, 1996 Library Version 1.0/Document Revision 1.0 52

The X Keyboard Extension 10 Keyboard Controls

10 Keyboard Controls

The Xkb extension is composed of two parts: a server extension, and a client-side X
library extension. This chapter discusses functions used to modify controls effecting the
behavior of the server portion of the Xkb extension. Chapter 11 discusses functions used
to modify controls which effect only the behavior of the client portion of the extension;
those controls are known as Library Controls.

Xkb contains control features which affect the entire keyboard, known as global keyboard
controls. Some of the controls may be selectively enabled and disabled; these controls are
known as théoolean ControlsBoolean Controls can be turned on or off under program
control and can also be automatically set to an on or off condition when a client program
exits. The remaining controls, known asien-Boolean Controlsare always active. The
XkbControlsRec structure describes the current state of most of the global controls and
the attributes effecting the behavior of each of these Xkb features. This chapter describes
the Xkb controls and how to manipulate them.

There are two possible components for each of the Boolean Controls: attributes describing
how the control should work, and a state describing whether the behavior as a whole is
enabled or disabled. The attributes and state for most of these controls are held in the
XkbControlsRec structure (see section 10.8).

You can manipulate the Xkb controls individually, via convenience functions, or as a
whole. To treat them as a group, modifyXdControlsRec structure to describe all of
the changes to be made, and then pass that structure and appropriate flags to an Xkb
library routine, or use AkbControlsChangesRec (see section 10.10.1) to reduce net-
work traffic. When using a convenience function to manipulate one control individually,
you do not use arkbControlsRec structure directly.

The Xkb controls are grouped as shown in Table 10.1.
Table 10.1 Xkb Keyboard Controls

Type of Control Control Name Boolean Control?
Controls for enabling and disabling other controls EnabledControls No
AutoReset No
Control for bell behavior AudibleBell Boolean
Controls for repeat key behavior PerKeyRepeat No
RepeatKeys Boolean
DetectableAutorepeat Boolean
Controls for keyboard overlays Overlayl Boolean
Overlay?2 Boolean
Controls for using the mouse from the keyboard MouseKeys Boolean
MouseKeysAccel Boolean
Controls for better keyboard access by AccessXFeedback Boolean
physically-impaired persons AccessXKeys Boolean
AccessXTimeout Boolean
BounceKeys Boolean
SlowKeys Boolean
StickyKeys Boolean
Controls for general keyboard mapping GroupsWrap No

February 5, 1996 Library Version 1.0/Document Revision 1.0 53

The X Keyboard Extension 10 Keyboard Controls

10.1

Table 10.1 Xkb Keyboard Controls

Type of Control Control Name Boolean Control?
IgnoreGroupLock Boolean
IgnoreLockMods No
InternalMods No

The individual categories and controls are described first, together with functions for
manipulating them. A description of tié&bControlsRec structure and the general
functions for dealing with all of the controls at once follows at the end of the chapter.

Controls that Enable and Disable other Controls

Enable and disable the boolean controls under program control by uskatited-
Controls control; enable and disable them upon program exit by configuring the
AutoReset control.

10.1.1 The EnabledControls Control

The EnabledControls control is a bit mask where each bit which is turned on means

the corresponding control is enabled, and when turned off, disabled. It corresponds to the
enabled_ctrldield of anXkbControlsRec structure (see section 10.8). The bits describ-
ing which controls are turned on or off are defined in Table 10.7 on page 74.

UseXkbChangeEnabledContrale manipulate th&nabledControls control.
Bool XkbChangeEnabledControlddpy, device_speanask value$

Display * dpy, [* connection to X server */

unsigned int device_spec /* keyboard device to modify */
unsigned int mask /* 1 bit -> controls to enable / disable */
unsigned int values /* 1 bit => enable, 0 bit => disable */

Themaskparameter specifies the boolean controls to be enabled or disabled, aald the
uesmask specifies the new state for those controls. Valid values for both of these masks
are composed of a bitwise inclusive OR of bits taken from the set of mask bits in Table
10.7 on page 74, using only those masks with “ok” irethebled_ctrlscolumn.

If the X server does not support a compatible version of Xkb or the Xkb extension has not
been properly initialized{kbChangeEnabledControtsturnsFalse , otherwise it sends
the request to the X server and retufng .

Note that thdenabledControls control only enables and disables controls; it does not
configure them. Some controls, such asAhéibleBell control, have no configuration
attributes, and are therefore manipulated solely by enabling and disabling them. Others,
however, have additional attributes to configure their behavior. For example, the
RepeatControl control usesepeat_delayandrepeat_intervafields to describe the

timing behavior of keys which repeat. TRepeatControl ~ behavior is turned on or off
depending on the value of th&bRepeatKeysMask bit, but you must use other means,

as described in this chapter, to configure its behavior in detalil.

10.1.2 The AutoReset Control

You can configure the boolean controls to automatically be enabled or disabled when a
program exits. This capability is controlled via two masks maintained in the X server on a

February 5, 1996 Library Version 1.0/Document Revision 1.0 54

The X Keyboard Extension 10 Keyboard Controls

per-client basis. There is no client-side Xkb data structure corresponding to these masks.
Whenever the client exits for any reason, any boolean controls specifiecautdheset
maskare set to the corresponding value fromatt-reset valuemask. This makes it
possible for clients to “clean up after themselves” automatically, even if abnormally termi-
nated. The bits used in the masks correspond tarilgledControls control bits.

For example, a client that replaces the keyboard bell with some other audible cue might
want to turn off theAudibleBell control to prevent the server from also generating a
sound and avoid cacophony. If the client were to exit without resettidgititdeBell

control, the user would be left without any feedback at all. SehixigleBell in both

the auto-reset mask and auto-reset values guarantees that the audible bell will be turned
back on when the client exits.

To get the current values of the auto reset controlsX&blGetAutoResetControls

Bool XkbGetAutoResetControlgdpy, auto_ctrls auto_valuep

Display * dpy, [* connection to X server */
unsigned int * auto_ctrls [* specifies which bits imuto_valuesare relevant */
unsigned int * auto_values /* 1 bit => corresponding control has auto-reset on */

XkbGetAutoResetContrdimckfillsauto_ctrlsandauto_valuewith theAutoReset con-
trol attributes for this particular client. It returfsie if successful, anéfalse otherwise.

To change the current values of theoReset control attributes, cakkbSetAutoReset-

Controls.

Bool XkbSetAutoResetControlgdpy, changesauto_ctrls auto_valuep
Display * dpy, [* connection to X server */
unsigned int changes [* controls for which to change auto-reset values */
unsigned int * auto_ctrls /* controls from changes which should auto reset */
unsigned int * auto_values /* 1 bit => auto-reset on */

XkbSetAutoResetContrathanges the auto-reset status and associated auto-reset values
for the controls selected laphangesFor any control selected lohangesif the corre-
sponding bit is set iauto_ctrls the control is configured to auto-reset when the client
exits. If the corresponding bit auto_valuess on, the control is turned on when the client
exits; if zero, the control is turned off when the client exits. For any control selected by
changesif the corresponding bit is not setanto_ctrls the control is configured to not
reset when the client exits. For example:

To leave the auto-reset controls &iickyKeys the way they are:
ok = XkbSetAutoResetControls(dpy, 0, 0, 0);

To change the auto-reset controls so 8tiakyKeys are unaffected when the client
exits:

ok = XkbSetAutoResetControls(dpy, XkbStickyKeysMask, 0, 0);

To change the auto-reset controls so 8tiakyKeys are turned off when the client
exits:

ok = XkbSetAutoResetControls(dpy, XkbStickyKeysMask, XkbStickyKeysMask, 0);
To change the auto-reset controls so 8tieskyKeys are turned on when the client exits:

February 5, 1996 Library Version 1.0/Document Revision 1.0 55

The X Keyboard Extension 10 Keyboard Controls

ok = XkbSetAutoResetControls(dpy, XkbStickyKeysMask, XkbStickyKeysMask,
XkbStickyKeysMask);

XkbSetAutoResetContrddackfillsauto_ctrlsandauto_valuesvith the auto-reset con-
trols for this particular client. Note that all of the bits are valid in the returned values, not
just the ones selected in tbleangesmask.

10.2 Control for Bell Behavior

The X server’s generation of sounds is controlled byAtkdbleBell control. Configu-
ration of different bell sounds is discussed in Chapter 9.

10.2.1 The AudibleBell Control

TheAudibleBell control is a boolean control which has no attributes. As such, you may
enable and disable it using either Er@bledControls ~ control or theAutoReset con-

trol discussed in section 10.1.1. When enabled, protocol requests to generate a sound
result in the X server actually producing a real sound; when disabled, requests to the

server to generate a sound are ignored unless the sound is forced. See section 9.2 on page
49.

10.3 Controls for Repeat Key Behavior

The repeating behavior of keyboard keys is governed by three contrdberiteyRe-
peat control, which is always active, and tRepeatKeys andDetectableAutore-

peat controls, which are boolean controls which may be enabled and disabled.
PerKeyRepeat determines which keys are allowed to repRapeatKeys governs the
behavior of an individual key when it is repeatibgtectableAutorepeat allows a
client to detect when a key is repeating as a result of being held down.

10.3.1 The PerKeyRepeat Control

ThePerKeyRepeat control is a bitmask long enough to contain a bit for each key on the
device; it determines which individual keys are allowed to repeat. ThéeikeyRe-

peat control provides no functionality different from that available via the core X proto-
col. There are no convenience functions in Xkb for manipulating this control. The
PerKeyRepeat control settings are carried in ther_key repedield of anXkbCon-

trolsRec structure, discussed in section 10.8.

10.3.2 The RepeatKeys Control

The core protocol only allows control over whether or not the entire keyboard or individ-
ual keys should auto-repeat when held doRepeatkeys is a boolean control which

extends this capability by adding control over the delay until a key begins to repeat and the
rate at which it repeatRepeatkeys is coupled with the core auto-repeat control: when
RepeatKeys is enabled or disabled, the core auto-repeat is enabled or disabled and
vice-versa.

Auto-repeating keys are controlled by two attributes. The finsgout is the delay after

the initial press of an auto-repeating key and the first generated repeat event. The second,
interval, is the delay between all subsequent generated repeat events. As with all boolean
controls, configuring the attributes which determine how the control operates does not
automatically enable the control as a whole; see section 10.1.

February 5, 1996 Library Version 1.0/Document Revision 1.0 56

The X Keyboard Extension 10 Keyboard Controls

To get the current attributes of tRepeatkeys control for a keyboard device, cxlkb-

GetAutoRepeatRate

Bool XkbGetAutoRepeatRatgdisplay, device_spec, timeout_rtrn, interval_jtrn
Display * display; [* connection to X server */
unsigned int device_spec /* desired device id, aXkbUseCoreKbd */
unsigned int timeout_rtrry /* backfilled with initial repeat delay, ms */
unsigned int interval_rtrn; /* backfilled with subsequent repeat delay, ms */

XkbGetAutoRepeatRadeieries the server for the current values oRégeatControls
control attributes, backfillsmeout_rtrnandinterval_rtrnwith them, and returnirue . If
a compatible version of the Xkb extension is not available in the s¢kb€etAutoRepe-

atRatereturnsFalse .
To set the attributes of the RepeatKeys control for a keyboard devickkb&ktAutoRe-
peatRate
Bool XkbSetAutoRepeatRatddisplay, device _spec, timeout, intejval
Display * display, [* connection to X server */
unsigned int device_spec /* device to configure, axkbUseCoreKbd */
unsigned int timeout /* initial delay, ms */
unsigned int interval, [* delay between repeats, ms */

XkbSetAutoRepeatRatends a request to the X server to configurdtheRepeat con-
trol attributes to the values specifiedimeoutandinterval.

XkbSetAutoRepeatRadees not wait for a reply; it normally returfime . Specifying a
zero value for eitheimeoutor interval causes the server to generaiadValue proto-
col error. If a compatible version of the Xkb extension is not available in the s¢kber,
SetAutoRepeatRateturnsfFalse .

10.3.3 The DetectableAutorepeat Control

Auto-repeat is the generation of multiple key events by a keyboard when the user presses
a key and holds it down. Keyboard hardware and device-dependent X server software
often implement auto-repeat by generating multfggPress events with no intervening
KeyRelease event. The standard behavior of the X server is to genekayRelease

event for everKeyPress event. If the keyboard hardware and device-dependent soft-
ware of the X server implement auto-repeat by generating miggteress events, the
device-independent part of the X server by default synthetically generatgRelease

event after eackeyPress event. This provides predictable behavior for X clients, but

does not allow those clients to detect the fact that a key is auto-repeating.

Xkb allows clients to requesditectable auto-repealf a client requests and the server
supportDetectableAutorepeat , Xkb generateKeyRelease events only when the
key is physically released. MfetectableAutorepeat Is not supported or has not been
requested, the server synthesiz&®yRelease event for each repeatireyPress

event it generates.

DetectableAutorepeat , unlike the other controls in this chapter, is not contained in
the XkbControlsRec structure, nor can it be enabled or disabled vidtiadledCon-

trols control. Instead, query and $egtectableAutorepeat usingXkbGetDetectab-
leAutorepeatindXkbSetDetectableAutorepeat

February 5, 1996 Library Version 1.0/Document Revision 1.0 57

The X Keyboard Extension 10 Keyboard Controls

10.4

DetectableAutorepeat is a condition which applies to all keyboard devices for a cli-
ent’'s connection to a given X server; it cannot be selectively set for some devices and not
for others. For this reason, none of the Xkb library functions involDetgctableAu-

torepeat involve a device specifier.

To determine whether or not the server supdetsctableAutorepeat , call XkbGet-
DetectableAutorepeat

Bool XkbGetDetectableAutorepeatdisplay, supported_rtin
Display * display, [* connection to X server */
Bool * supported_rtrn /* backfilled True if DetectableAutorepeat supported */

XkbGetDetectableAutorepegueries the server for the current statBetbctableAu-
torepeat and waits for a reply. Bupported_rtrris notNULL, it backfillssupported_rtrn
with True if the server supporBetectableAutorepeat , andFalse otherwise Xkb-
GetDetectableAutorepeagturns the current state DétectableAutorepeat for the
requesting clientTrue if DetectableAutorepeat is set, andralse otherwise.

To setDetectableAutorepeat , useXkbSetDetectableAutorepedihis request affects
all keyboard activity for the requesting client only; other clients still see the expected
non-detectable auto-repeat behavior, unless they have requested otherwise.

Bool XkbSetDetectableAutorepeatdisplay, detectable, supported_rirn

Display * display, [* connection to X server */
Bool detectable [* True => setDetectableAutorepeat *
Bool * supported_rtrn /* backfilled True if DetectableAutorepeat supported */

XkbSetDetectableAutorepesends a request to the server tdDsdéctableAutore-

peat on for the current client detectablas True , and off itdetectablas False ; it then
waits for a reply. Isupported_rtrnis notNULL, XkbSetDetectableAutorepdadckfills
supported_rtrrwith True if the server supporfSetectableAutorepeat , andFalse

if it does notXkbSetDetectableAutorepeaturns the current state DétectableAu-
torepeat for the requesting clientrue if DetectableAutorepeat is set, andralse
otherwise.

Controls for Keyboard Overlays (Overlayl and Overlay2 Controls)

A keyboard overlay allows some subset of the keyboard to report alternate keycodes when
the overlay is enabled. For example, a keyboard overlay can be used to simulate a numeric
or editing keypad on a keyboard that does not actually have one by reusing some portion
of the keyboard as an overlay. This technique is very common on portable computers and
embedded systems with small keyboards.

Xkb includes direct support for two keyboard overlays, usin@treglayl and

Overlay2 controls. WherDverlayl is enabled, all of the keys that are members of the

first keyboard overlay generate an alternate keycode. \Whettay2 is enabled, all of

the keys that are members of the second keyboard overlay generate an alternate keycode.
The two overlays are mutually exclusive; any particular key may be in at most one over-
lay. Overlayl andOverlay2 are boolean controls. As such, you may enable and disable
them using either thEénabledControls control or theAutoReset control discussed in
section 10.1.1.

February 5, 1996 Library Version 1.0/Document Revision 1.0 58

The X Keyboard Extension 10 Keyboard Controls

To specify the overlay to which a key belongs and the alternate keycode it should generate
when that overlay is enabled, assign it eithex#i®B_Overlayl or XkbKB_Overlay2
key behaviors, as described in section 16.2 on page 161.

10.5 Controls for Using the Mouse from the Keyboard

Using Xkb, it is possible to configure the keyboard to allow simulation of the X pointer
device. This simulation includes both movement of the pointer itself, and press and release
events associated with the buttons on the pointer. Two controls affect this behavior: the
MouseKeys control determines whether or not simulation of the pointer device is active,
as well as configuring the default button; MeuseKeysAccel control determines the
movement characteristics of the pointer when simulated via the keyboard. Both of them
are boolean controls; as such, you may enable and disable them using either the
EnabledControls control or theAutoReset control discussed in section 10.1.1. The
individual keys which simulate different aspects of the pointer device are determined by
the keyboard mapping, discussed in Chapter 16.

10.5.1 The MouseKeys Control

TheMouseKeys control allows a user to control all the mouse functions from the key-
board. WherMouseKeys are enabled, all keys witflouseKeys actions bound to them
generate core pointer events instead of noKeglPress andKeyRelease events.

TheMouseKeys control has a single attributek_dflt_btn which specifies the core but-

ton number to be used by mouse keys actions that do not explicitly specify a button. There
is no convenience function for getting or setting the attribute; insteadikizBetControls
andXkbSetControlgsee section 10.9 and section 10.10).

Note MouseKeys can also be turned on and off by pressing the key combination necessary
to produce aiXK_Pointer_EnableKeys keysym. The defacto default standard
for this isShift+Alt+NumLock , but this may vary depending upon the keymap.

10.5.2 The MouseKeysAccel Control

When theMouseKeysAccel control is enabled, the effect of a key-activated pointer
motion action changes as a key is held down. If the control is disabled, pressing a
mouse-pointer key yields one mouse event. WMenseKeysAccel is enabled, mouse
movement is defined by an initial distance specified in#i®SA MovePtr action and
the following fields in theXkbControlsRec structure (see section 10.8).

Table 10.2 MouseKeysAccel Fields

Field Function

mk_delay Time (ms) between the initial key press and the first repeated motion event
mk_interval Time (ms) between repeated motion events

mk_time_to_max Number of events (count) before the pointer reaches maximum speed
mk_max_speed The maximum speed (in pixels per event) the pointer reaches

mk_curve The ramp used to reach maximum pointer speed

There are no convenience functions to query or change the attributeMoiudeKey-
sAccel control; instead cakkbGetControlandXkbSetControl¢see section 10.9 and
section 10.10).

February 5, 1996 Library Version 1.0/Document Revision 1.0 59

The X Keyboard Extension 10 Keyboard Controls

The effects of the attributes of tMouseKeysAccel control depend upon whether the
XkbSA MovePtr action (see section 16.1) specifies relative or absolute pointer motion.

Absolute Pointer Motion

If an XkbSA MovePtr action specifies an absolute position for one of the coordinates but
still allows acceleration, all repeated events contain any absolute coordinates specified in
the action. For example, if thkbSA MovePtr action specifies an absolute position for

the X direction, but a relative motion for the Y direction, the pointer accelerates in the Y
direction, but stays at the same X position.

Relative Pointer Motion

If the XkbSA MovePtr action specifies relative motion, the initial event always moves
the cursor the distance specified in the action. Aftier delaymilliseconds, a second
motion event is generated, and another occurs enkryntervalmilliseconds until the
user releases the key.

Between the time of the second motion eventrakdtime _to_maintervals, the change

in pointer distance per interval increases with each interval. Aiftetime _to_mainter-

vals have elapsed, the change in pointer distance per interval remains the same, and is cal-
culated by multiplying the original distance specified in the actiomkymax_speed

For example, if th&XxkbSA MovePtr action specifies a relative motion in the X direction
of 5, mk_delay160,mk_intervat40,mk_time_to_masB0, andnk_max_speedO, the
following happens when the user presses the key:

» The pointer immediately moves 5 pixels in the X direction when the key is pressed.

» After 160 millisecondsnok_delay, and every 40 milliseconds thereaftek(interva),
the pointer moves in the X direction.

» The distance in the X direction increases with each interval until 30 intervals
(mk_time_to_maxhave elapsed.

» After 30 intervals, the pointer stops accelerating, and moves 150 pixels
(mk_max_speetithe original distance) every interval thereafter, until the key is
released.

The increase in pointer difference for each interval is a functiatkoturveEvents after
the first but before maximum acceleration has been achieved are accelerated according to
the formula:

0 max_accel 0

d(step = action_deltax Dsteps to mastrveFactot]

x stepgurveractor

Whereaction_deltais the relative motion specified by thkkbSA MovePtr action,
mk_max_speeahdmk_time _to_maare parameters to tihdouseKeysAccel control,
and the curveFactor is computed usingMoeiseKeysAccel mk_curveparameter as fol-
lows:

curve
curveFactor(curveF % 1000

With the result that enk_curveof O causes the distance moved to increase linearly from
action_deltato (mk_max_speed action_dejtaA negativenk _curvecauses an initial sharp

increase in acceleration which tapers off, while a positive curve yields a slower initial
increase in acceleration followed by a sharp increase as the number of pointer events gen-

February 5, 1996 Library Version 1.0/Document Revision 1.0 60

The X Keyboard Extension 10 Keyboard Controls

erated by the action approachmek_time_to_maxThe legal values fank_curveare
between -1000 and 1000.

A distance vs. time graph of the pointer motion is shown in Figure 10.1.

/
/
/
/

mk_max_speed * Action delta

DOSY W —TO

II///

Action delta
|IIIIIIIIIIIIIII|III\)IIIIII
mk_delay mk time to max mk_interval
(msec) (count) ~ (msec)

e MK _curve=0
s MK _curve<0
resrsrr. MK _curve>0

Figure 10.1 MouseKeys Acceleration

10.6 Controls for Better Keyboard Access by Physically-Impaired Persons

The Xkb extension includes several controls specifically aimed at making keyboard use
more effective for physically impaired people. All of these controls are boolean controls,
and may be individually enabled and disabled, as well as configured to tune their specific
behavior. The behavior of these controls is based upon the AccessDOS package

10.6.1 The AccessXKeys Control

Enabling or disabling the keyboard controls through a graphical user interface may be
impossible for people who need to use the controls. For example, a user who needs
SlowKeys (see section 10.6.6) may not even be able to start the graphical application, let

1. AccessDOS provides access to the DOS operating system for people with physical impairments and was devel-
oped by the Trace R&D Center at the University of Wisconsin. For more information on AccessDOS, contact the
Trace R&D Center, Waisman Center and Department of Industrial Engineering, University of Wisconsin-Madison
WI 53705-2280. Phone: 608-262-6966. e-mail: info@trace.wisc.edu.

February 5, 1996 Library Version 1.0/Document Revision 1.0 61

The X Keyboard Extension 10 Keyboard Controls

alone use it, iSlowKeys is not enabled. To allow easier access to some of the controls,
the AccessXKeys control provides a set of special key sequences similar to those avail-
able in AccessDOS.

When theAccessXKeys control is enabled, the user can turn controls on or off from the
keyboard by entering the following standard key sequences:

« Holding down a shift key by itself for eight seconds togglesSiba/Keys control.

» Pressing and releasing the left or righift key five times in a row, without any inter-
vening key events and with less than 30 seconds delay between consecutive presses,
toggles the state of ttgtickyKeys control.

 Simultaneously operating two or more modifier keys deactivateStitie/Keys
control.

When theAccessXKeys control is disabled, Xkb does not look for the above special key
sequences.

Some of these key sequences optionally generate audible feedback of the change in state,
as described in section 10.6.3 XdbControlsNotify events, described in section
10.11.

10.6.2 The AccessXTimeout Control

In environments where computers are shared, features sBtdw®ys present a prob-

lem: if SlowKeys is on, the keyboard can appear to be unresponsive because keys are not
accepted until they are held for a certain period of time. To help solve this problem, Xkb
provides arAccessXTimeout control to automatically change the enabled/disabled state

of any boolean controls, and to change the value cAt¢bessXKeys andAccessX-

Feedback control attributes if the keyboard is idle for a specified period of time.

When a timeout as specified BgcessXTimeout occurs and a control is consequently
modified, Xkb generates atkbControlsNotify event. For more information ofkb-
ControlsNotify events, refer to section 10.11 on page 79.

Call XkbGetAccessXTimeout query the curremccessXTimeout options for a key-
board device.

Bool XkbGetAccessXTimeoufdisplay device_spedimeout_rtrn ctrls_mask_rtrn
ctrls_values_rtrnoptions_mask_rtrn, options_values_jtrn

Display * display, [* connection to X server */

unsigned int device_spec [* device to query, oKkbUseCoreKbd */
unsigned short * timeout_rtrn /* delay until AccessXTimeout, seconds */
unsigned int * ctrls_mask_rtrn /* backfilled with controls to modify */
unsigned int * ctrls_values_rtrn * backfilled with on/off status for controls */
unsigned short * opts_mask_rtrn /* backfilled withax_optiongo modify */
unsigned short * opts_values_rtrn /* backfilled with values foax_options/

XkbGetAccessXTimeosegnds a request to the X server to obtain the current values for the
AccessXTimeout attributes, waits for a reply, and backfills the values into the appropri-
ate arguments. The parametepss_mask_rtrrandopts_values_rtrrare backfilled with

the options to modify and the values &t _optionswhich is a field in théxkbCon-

trolsRec structure (see section 10.8kbGetAccessXTimeowdturnsTrue if success-

ful; if a compatible version of the Xkb extension is not available in the server
XkbGetAccessXTimeorgturnsFalse .

February 5, 1996 Library Version 1.0/Document Revision 1.0 62

The X Keyboard Extension 10 Keyboard Controls

To configure theAccessXTimeout options for a keyboard device, cdkbSetAccessX-
Timeout

Bool XkbSetAccessXTimeoutdisplay device_spec, timeout, ctrls_mask, ctrls_values,
opts_mask, opts_valdes

Display * display, [* connection to X server */

unsigned int device_spec /* device to configure, axkbUseCoreKbd */
unsigned short timeout /* seconds idle until AccessXTimeout occurs */
unsigned int ctrls_mask /* boolean controls to modify */

unsigned int ctrls_values /* new bits for controls selected loyrls_mask*/
unsigned short opts_mask /* ax_optiongo change */

unsigned short opts_values /* new bits forax_optionsselected bppts _mask/

timeoutspecifies the number of seconds the keyboard must be idle before the controls are
modified.ctrls_maskspecifies what controls are to be enabled or disabled, and
ctrls_valuesspecifies whether those controls are to be enabled or disabled. The bit values
correspond to those for enabling and disabling boolean controls (see section 10.1.1). The
opts_maskield specifies which attributes of tiecessXKeys andAccessXFeedback

controls are to be changed, apts_valuespecifies the new values for those options.

The bit values correspond to those fordalkeoptiondield of anXkbDescRec (see section

10.8).

XkbSetAccessXTimeasgnds a request to configure fezessXTimeout control to the
server. It does not wait for a reply, and normally retdime . If a compatible version of
the Xkb extension is not available in the seXi@rSetAccessXTimea@turnsrFalse .

10.6.3 The AccessXFeedback Control

Just as some keyboards can produce keyclicks to indicate when a key is pressed or repeat-
ing, Xkb can provide feedback for the controls by using special beep codes. Use the
AccessXFeedback control to configure the specific types of operations which generate
feedback.

There is no convenience function for modifying AueessXFeedback control, although

the feedback as a whole can be enabled or disabled just as other boolean controls are (see
section 10.1). Individual beep codes are turned on or off by modifying the following bits

in theax_optiondield of anXkbControlsRec structure and usingkbSetControl¢see

section 10.10):

Table 10.3 AccessXFeedback Masks

Action Beep Code ax_options bit

LED turned on High pitched beep XKkbAX_IndicatorFBMask
LED turned off Low pitched beep XkbAX_IndicatorFBMask
More than one LED changed state Two high pitched beeps XkbAX_IndicatorFBMask
Control turned on Rising Tone XkbAX_FeatureFBMask
Control turned off Falling Tone XkbAX_FeatureFBMask
More than one control changed stateTwo high pitched beeps XkbAX FeatureFBMask

SlowKeys and BounceKeys abouthree high pitched beeps XkbAX_SlowWarnFBMask
to be turned on or off

SlowKeys key pressed Medium pitched beep XkbAX_SKPressFBMask
SlowKeys key accepted Medium pitched beep XkbAX_SKAcceptFBMask
SlowKeys key rejected Low pitched beep XkbAX_SKRejectFBMask

February 5, 1996 Library Version 1.0/Document Revision 1.0 63

The X Keyboard Extension 10 Keyboard Controls

Table 10.3 AccessXFeedback Masks

Action Beep Code ax_options bit
Accepted SlowKeys key released Medium pitched beep XkbAX_SKReleaseFBMask
BounceKeys key rejected Low pitched beep XkbAX_BKRejectFBMask
StickyKeys key latched Low pitched beep followedXibAX _StickyKeysFBMask

high pitched beep
StickyKeys key locked High pitched beep XkbAX_StickyKeysFBMask
StickyKeys key unlocked Low pitched beep XkbAX _StickyKeysFBMask

Implementations that cannot generate continuous tones may generate multiple beeps
instead of falling and rising tones; for example, they can generate a high-pitched beep fol-
lowed by a low-pitched beep instead of a continuous falling tone. Other implementations
can only ring the bell with one fixed pitch. In these cases, use the

XkbAX_ DumbBellFBMask bit of ax_optiondo indicate the bell can only ring with a fixed
pitch.

When any of the above feedbacks occur, Xkb may genexitaBalINotify event (see
section 9.4).

10.6.4 AccessXNotify Events

The server can generatgbAccessXNotify events for some of the global keyboard
controls. The structure for thékbAccessXNotify event type is as follows:

typedef struct {
int type; I* Xkb extension base event cotle
unsigned long serial, X server serial number for evetit
Bool send_event; [True => synthetically generated
Display * display; [*server connection where event generéated
Time time; [* server time when event generatéd
int xkb_type; [*XkbAccessXNotify — */
int device I* Xkb device id, will not beXkbUseCoreKbd */
int detall; /* XKbAXN_* */
KeyCode keycode; * key of event */
int slowKeysDelay; /* current SlowKeys delay */
int debounceDelay; /* current debounce delay */

} XkbAccessXNotifyEvent
Thedetail field describes what AccessX event just occurred and can be any of the values

in Table 10.4.
Table 10.4 AccessXNotify Events
detail Reason
XkbAXN_SKPress A key was pressed when SlowKeys was enabled.
XkbAXN_SKAccept A key was accepted (held longer than the SlowKeys delay).
XkbAXN_SKRelease An accepted SlowKeys key was released.
XKbAXN_SKReject A key was rejected (released before the SlowKeys delay expired).
XKkbAXN_BKAccept A key was accepted by BounceKeys.
XkbAXN_BKReject A key was rejected (pressed before the BounceKeys delay

expired).
XkbAXN_AXKWarning AccessXKeys is about to turn on/off StickyKeys or BounceKeys.

February 5, 1996 Library Version 1.0/Document Revision 1.0 64

The X Keyboard Extension 10 Keyboard Controls

Thekeycoddield reports the keycode of the key for which the event occurred. If the
action is related t&lowKeys , theslowKeysDelafield contains the curre@owKeys
acceptance delay. If the action is relateBaanceKeys , thedebounceDelafield contains
the currenBounceKeys debounce delay.

Selecting for AccessX Events

To receivexkbAccessXNotify events under all possible conditions, edbSelect-
Events(see section 4.3) and paddAccesXNotifyMask in bothbits_to_changand
values_for_bits

To receivexXkbStateNotify events only under certain conditions, ¢étbSelectEvent-
Details usingXkbAccessXNotify ~ as theevent_typend specifying the desired state
changes imits_to_changandvalues_for_bitaising mask bits from Table 10.5.

Table 10.5 AccessXNotify Event Details
XkbAccessXNotify Event Details Value Circumstances

XKkbAXN_SKPressMask (1<<0) Slow key press notification wanted
XkbAXN_SKAcceptMask (1<<1) Slow key accept notification wanted
XkbAXN_SKRejectMask (1<<2) Slow key reject notification wanted
XkbAXN_SKReleaseMask (1<<3) Slow key release notification wanted
XkbAXN_BKAcceptMask (1<<4) Bounce key accept notification wanted
XkbAXN_BKRejectMask (1<<b) Bounce key reject notification wanted
XKbAXN_AXKWarningMask (1<<6) AccessX warning notification wanted
XkbAXN_AllEventsMask (0x7f) All AccessX features notifications wanted

10.6.5 StickyKeys, RepeatKeys, and MouseKeys Events

The StickyKeys , RepeatKeys , andMouseKeys controls do not generate specific
events. Instead, the latching, unlatching, locking or unlocking of modifiers 8tikg
yKeys generateXkbStateNotify events as described in section 5.4. Repeating keys
generate normadeyPress andKeyRelease events, though the auto-repeat can be
detected usin@etectableAutorepeat (see section 10.3.3). FinallylouseKeys gen-
erates pointer events identical to those of the core pointer device.

10.6.6 The SlowKeys Control

Some users may accidentally bump keys while moving a hand or typing stick toward the
key they want. Usually, the keys that are accidentally bumped are just hit for a very short
period of time. Thé&lowKeys control helps filter these accidental bumps by telling the
server to wait a specified period, called 8lewKeys acceptance deldefore delivering

key events. If the key is released before this period elapses, no key events are generated.
Users can then bump any number of keys on their way to the one they want without acci-
dentally getting those characters. Once they have reached the key they want, they can then
hold the desired key long enough for the computer to acc8iwiKeys is a boolean

control with one configurable attribute.

When theSlowKeys control is active, the server reports the initial key press, subsequent
acceptance or rejection, and release of any key to interested clients by sending an appro-
priateAccessXNotify ~ event (see section 10.6.4).

February 5, 1996 Library Version 1.0/Document Revision 1.0 65

The X Keyboard Extension 10 Keyboard Controls

To get theSlowKeys acceptance delay for a keyboard device XldesetSlowKeysDe-

lay.

Bool XkbGetSlowKeysDelay{display device_spedelay_rtrn)
Display * display; /* connection to X server */
unsigned int device_spec /* device id, orXkbUseCoreKbd */
unsigned int * delay_rtrn /* backfilled with SlowKeys delay, ms */

XkbGetSlowKeysDelagquests the attributes of tBwKeys control from the server,
walits for a reply, and backfildelay rtrnwith the SlowKeys delay attributeXkb-
GetSlowKeysDelaseturnsTrue if successful; if a compatible version of the Xkb exten-
sion is not available in the servkbGetSlowKeysDelagturnsFalse .

To set theSlowKeys acceptance delay for a keyboard device, X&iSetSlowKeysDelay
Bool XkbSetSlowKeysDelaydisplay device_spedlelay)

Display * display, [* connection to X server */
unsigned int device_spec /* device to configure, axkbUseCoreKbd */
unsigned int delay, /* SlowKeys delay, ms */

XkbSetSlowKeysDelagnds a request to configure BlewKeys control to the server. It
does not walit for a reply, and normally retufinge . Specifying a value d for thedelay
parameter causekbSetSlowKeys generate BadValue protocol error. If a compatible
version of the Xkb extension is not available in the seXkdSetSlowKeysDelagturns
False .

10.6.7 The BounceKeys Control

Some users may accidentally “bounce” on a key when they release it. They press it once,
then accidentally press it again after they release itBbhieceKeys control temporarily
disables a key after it has been pressed, effectively “debouncing” the keyboard. The
period of time the key is disabled after it is released is known &otneceKeys delay
BounceKeys is a boolean control.

When theBounceKeys control is active, the server reports acceptance or rejection of any
key to interested clients by sending an appropAatessXNotify event (see section

10.6.4).
UseXkbGetBounceKeysDel&y query the currerBounceKeys delay for a keyboard
device.
Bool XkbGetBounceKeysDelaydisplay device spedalelay_rtrr)
Display * display; [* connection to X server */
unsigned int device_spec /* device id, orxkbUseCoreKbd */
unsigned int * delay_rtrn /* backfilled with bounce keys delay, ms */

XkbGetBounceKeysDelagquests the attributes of tBeunceKeys control from the
server, waits for a reply, and backfitielay_rtrnwith theBounceKeys delay attribute.
XkbGetBounceKeysDelagturnsTrue if successful; if a compatible version of the Xkb
extension is not available in the ser¥dbhGetSlowKeysDelagturnsrFalse .

February 5, 1996 Library Version 1.0/Document Revision 1.0 66

The X Keyboard Extension 10 Keyboard Controls

To set theBounceKeys delay for a keyboard device, uskbSetBounceKeysDelay
Bool XkbSetBounceKeysDelafdisplay device_spedelay)

Display * display; [* connection to X server */
unsigned int device_spec /* device to configure, axkbUseCoreKbd */
unsigned int delay, /* bounce keys delay, ms */

XkbSetBounceKeysDelagnds a request to configure BainceKeys control to the
server. It does not wait for a reply, and normally retime . Specifying a value d for
thedelayparameter cause&kbSetBounceKeysDelay generate BadValue protocol
error. If a compatible version of the Xkb extension is not available in the sét8et-
BounceKeysDelageturnsFalse .

10.6.8 The StickyKeys Control

Some people find it difficult or even impossible to press two keys at once. For example, a
one-fingered typist or someone using a mouth stick cannot presisiftreendl keys at the

same time. Th&tickyKeys control solves this problem by changing the behavior of the
modifier keys. WithStickyKeys , the user can first press a modifier, release it, then press
another key. For example, to get an exclamation point on a PC-style keyboard, the user
can press thshift key, release it, and then press 1Heey.

StickyKeys also allows users to lock modifier keys without requiring special locking
keys. WherstickyKeys is enabled, a modifier is latched when the user presses it just
once. The user can press a modifier twice in a row to lock it, and then unlock it by pressing
it one more time.

When a modifier is latched, it becomes unlatched when the user presses a non-modifier
key or a pointer button. For instance, to enter the sequg#ifte +Control +Z the user

could press and release #higft key to latch it, then press and releaseCbetrol key to

latch it, and finally press and release the Z key. Becausothiml key is a modifier key,
pressing it does not unlatch thkift key. Thus, after the user pressesthatrol key, both
theShift andControl modifiers are latched. When the user pressez kieg, the effect

is as though the user had presShift +Control +Z. In addition, because tlzekey is

not a modifier key, th&hift andControl modifiers are unlatched.

Locking a modifier key means the modifier affects any key or pointer button the user
presses until the user unlocks it or it is unlocked programmatically. For example, to enter
the sequence (“XKB”) on a keyboard where ‘(" is a shifted ‘9’, *)’ is a shifted ‘0", and *”

is a shifted single quote, the user could press and releaShkiftieey twice to lock the

Shitt modifier. Then, when the user pressesthex, k, b, ‘, and0 keys in sequence, it
generates (“XKB”). To unlock thg&hift modifier, the user can press and releasshife

key.

StickyKeys is a boolean control with two separate attributes which may be individually
configured: one to automatically disable it, and one to control the latching behavior of
modifier keys.

StickyKeys Options

The StickyKeys control has two options that can be accessed viaxtheptionsof an
XkbControlsRec structure (see section 10.8). The first optibuoKeys, specifies
whetherStickyKeys should automatically turn off when two keys are pressed at the

same time. This feature is useful for shared computers so people who do not want them do

February 5, 1996 Library Version 1.0/Document Revision 1.0 67

The X Keyboard Extension 10 Keyboard Controls

not need to turistickyKeys off if a previous user lefstickyKeys on. The second
option,LatchToLock , specifies whether or n&tickyKeys locks a modifier when
pressed twice in a row.

Call XkbGetStickyKeysOptioms query the curreritickyKeys attributes for a key-
board device.

Bool XkbGetStickyKeysOptions(display device_spemptions_rtrr)

Display * display; [* connection to X server */
unsigned int device_spec /* device id, orXkbUseCoreKbd */
unsigned int * options_rtrn /* backfilled with StickyKeys option mask */

XkbGetStickyKeysOptiomsquests the attributes of tBéckyKeys control from the
server, waits for a reply, and backfiiptions_rtrnwith a mask indicating whether the
individual StickyKeys options are on or off. Valid bits wptions_rtrnare:

XKkbAX_TwoKeysMask
XkbAX_LatchTolLockMask

XkbGetStickyKeysOptiomsturnsTrue if successful; if a compatible version of the Xkb
extension is not available in the ser¥ébGetStickyKeysOptiomsturnsFalse .

To set theStickyKeys attributes for a keyboard device, cdlbSetStickyKeysOptians
Bool XkbSetStickyKeysOptiongdisplay device_spec, mask, vallies

Display * display, [* connection to X server */

unsigned int device_spec /* device to configure, or XkbUseCoreKbd */
unsigned int mask /* selects StickyKeys attributes to modify */
unsigned int values; [* values for selected attributes */

XkbSetStickyKeysOptiosends a request to configure BtekyKeys control to the
server. It does not wait for a reply, and normally retdimue . The valid bits to use for
both themaskandvaluesparameters are:

XkbAX_TwoKeysMask
XkbAX_LatchToLockMask

If a compatible version of the Xkb extension is not available in the s¢kixSetStick-
yKeysOptiongeturnsFalse .

10.7 Controls for General Keyboard Mapping

There are several controls which apply to the keyboard mapping in general. They control
handling of out-of-range group indices, and how modifiers are processed and consumed in
the server. These are:

GroupsWrap
IgnoreGroupLock
IgnoreLockMods
InternalMods

IgnoreGroupLock is a boolean control; the rest are always active.

Without the modifier processing options provided by Xkb, passive grabs set via transla-
tions in a client (for exampl<<KeyPress>space) do not trigger if any modifiers
other than those specified by the translation are set. This results in problems in the user

February 5, 1996 Library Version 1.0/Document Revision 1.0 68

The X Keyboard Extension 10 Keyboard Controls

interface when eithedumLock or a secondary keyboard group is active. [Ghere-
LockMods andIignoreGroupLock controls make it possible to avoid this behavior with-
out exhaustively specifying a grab for every possible modifier combination.

10.7.1 The GroupsWrap Control

The GroupsWrap control determines how illegal groups are handled on a global basis.
There are a number of valid keyboard sequences which can cause the effective group
number to go out of range. When this happens, the group must be normalized back to a
valid number. Thé&roupsWrap control specifies how this is done.

When dealing with group numbers, all computations are done using the group index,
which is the group number minus one. There are three different algorithms; the
GroupsWrap control specifies which one is used:

» XkbRedirectintoRange

All invalid group numbers are converted to a valid group number by taking the last
four bits of theGroupsWrap control and using them as the group index. If the
result is still out of range, Group one is used.

» XkbClamplintoRange

All invalid group numbers are converted to the nearest valid group number. Group
numbers larger than the highest supported group number are mapped to the highest
supported group; those less than one are mapped to group one.

« XkbWraplntoRange

All invalid group numbers are converted to a valid group number using integer
modulus applied to the group index.

There are no convenience routines for manipulatingstbepsWrap control. Manipulate
the GroupsWrap control via thegroups_wragfield in theXkbControlsRec structure,
then useXkbSetControlandXkbGetControl§see section 10.9 and section 10.10) to
guery and change this control.

Note See also section 15.3.2 on page 134 for a discussion of the relategrdiefd,infq
which also normalizes a group under certain circumstances.

10.7.2 The IgnoreLockMods Control

The core protocol does not provide a way to exclude specific modifiers from grab calcula-
tions, with the result that locking modifiers sometimes have unanticipated side-effects.

ThelgnoreLockMods control specifies modifiers which should be excluded from grab
calculations. These modifiers are also not reported in any core eventskeyiepss
andKeyRelease events which do not activate a passive grab and which do not occur
while a grab is active.

Manipulate thdgnoreLockMods control via thegnore_lockfield in theXkbCon-
trolsRec structure, then usekbSetControlendXkbGetControl§see section 10.9 and
section 10.10) to query and change this control. AlternativelyX&albetignoreLock-
Mods

February 5, 1996 Library Version 1.0/Document Revision 1.0 69

The X Keyboard Extension 10 Keyboard Controls

To set the modifiers which, if locked, are not to be reported in matching events to passive
grabs, calXkbSetlgnoreLockMods.

Bool XkbSetlgnoreLockMods(display, device_spec, affect_real, real_values, affect_virtual,
virtual_value$
Display * display, [* connection to the X server */
unsigned int device_spec /* device id, orXkbUseCoreKbd */
unsigned int affect_rea] /* mask of real modifiers affected by this call */
unsigned int real_values /* values for affected real modifiers (1=>set, 0=>unset) */
unsigned int affect_virtuaj/* mask of virtual modifiers affected by this call */
unsigned int virtual_values/* values for affected virtual modifiers (1=>set, O=>unset) */

XkbSetlgnoreLockModsends a request to the server to change the selgrere-
LockMods control.affect_realandreal valuesare masks of real modifier bits indicating
which real modifiers are to be added and removed from the seig@rsLockMods
control. Modifiers selected by bottifect realandreal valuesare added to the server’s
IgnoreLockMods control; those selected laffect_realbut not byreal _valuesare
removed from the serverignoreLockMods control. Valid values foaffect_realand
real_valuesconsist of any combination of the eight core modifier IStsftMask
LockMask , ControlMask , Mod1Mask - Mod5Mask. affect_virtualandvirtual valuesare
masks of virtual modifier bits indicating which virtual modifiers are to be added and
removed from the serverlgnoreLockMods control. Modifiers selected by both
affect_virtualandvirtual _valuesare added to the servelgmoreLockMods control;
those selected kaffect_virtualbut not byvirtual valuesare removed from the server’'s
IgnoreLockMods control. See section 7.1 on page 31 for a discussion of virtual modifier
masks to use iaffect_virtualandvirtual_values XkbSetlgnoreLockMod$oes not wait
for a reply from the server. It returiisue if the request was sent, aRdlse otherwise.

10.7.3 The IgnoreGroupLock Control

ThelgnoreGroupLock control is a boolean control with no attributes. If enabled, it
specifies that the locked state of the keyboard group should not be considered when acti-
vating passive grabs.

SincelgnoreGroupLock is a boolean control with no attributes, use the general boolean
controls functions (see section 10.1) to change its state.

10.7.4 The InternalMods Control

The core protocol does not provide any means to prevent a modifier from being reported
in events sent to clients; Xkb, however makes this possible viat¢éhealMods con-

trol. It specifies modifiers which should be consumed by the server and not reported to cli-
ents. When a key is pressed and a modifier which has its bit setlitethalMods

control is reported to the server, the server uses the modifier when determining the actions
to apply for the key. The server then clears the bit, so it is not actually reported to the cli-
ent. In addition, modifiers specified in thternalMods ~ control are not used to deter-

mine grabs and are not used to calculate core protocol compatibility state.

Manipulate thdnternalMods control via thanternal field in theXkbControlsRec
structure, usingkkbSetControleandXkbGetControlgsee section 10.9 and section 10.10).
Alternatively, callXkbSetServerinternalMods

February 5, 1996 Library Version 1.0/Document Revision 1.0 70

The X Keyboard Extension 10 Keyboard Controls

10.8

To set the modifiers which are consumed by the server before events are delivered to the
client, callXkbSetServerinternalMods.

Bool XkbSetServerinternalMods(display, device_spec, affect_real, real_values, affect_virtual,
virtual_value$
Display * display, [* connection to the X server */
unsigned int device_spet/* device id, orXkbUseCoreKbd */
unsigned int affect_rea] /* mask of real modifiers affected by this call */
unsigned int real_values /* values for affected real modifiers (1=>set, 0=>unset) */
unsigned int affect_virtuaj/* mask of virtual modifiers affected by this call */
unsigned int virtual_values/* values for affected virtual modifiers (1=>set, O=>unset) */

XkbSetServerinternalMod®nds a request to the server to change the internal modifiers
consumed by the servexffect realandreal_valuesare masks of real modifier bits indi-
cating which real modifiers are to be added and removed from the server’s internal modi-
fiers control. Modifiers selected by batffect realandreal valuesare added to the

server’s internal modifiers control; those selectedfigct_realbut not byreal_valuesare
removed from the server’s internal modifiers mask. Valid valuesaffect_realand
real_valuesconsist of any combination of the eight core modifier IStsftMask

LockMask , ControlMask , Mod1Mask - Mod5Mask. affect_virtualandvirtual valuesare
masks of virtual modifier bits indicating which virtual modifiers are to be added and
removed from the server’s internal modifiers control. Modifiers selected by both
affect_virtualandvirtual_valuesare added to the server’s internal modifiers control; those
selected byaffect virtualbut not byvirtual_valuesare removed from the server’s internal
modifiers control. See section 7.1 on page 31 for a discussion of virtual modifier masks to
use inaffect_virtualandvirtual values XkbSetServerinternalMod®oes not wait for a

reply from the server. It returfiSue if the request was sent, aRdlse otherwise.

The XkbControlsRec Structure

Many of the individual controls described in sections 10.1 through 10.7 may be manipu-
lated via convenience routines discussed in those sections. Some of them, however, have
no convenience routines. TR&bControlsRec structure allows the manipulation of one

or more of the controls in a single operation, and to track changes to any of them, in con-
junction with thexkbGetControlsandXkbSetControl$éunctions. This is the only way to
manipulate those controls which have no convenience functions.

The XkbControlsRec structure is defined as follows:

#define XkbMaxLegalKeyCode 255

#define XkbPerKeyBitArraySize ((XkbMaxLegalKeyCode+1)/8)

typedef struct {
unsigned char mk_dflt_btn; /* default button for keyboard driven mouse */
unsigned char num_groups; /* number of keyboard groups */
unsigned char groups_wrap; /* how to wrap out-of-bounds groups */
XkbModsRec internal; [* defines server internal modifiers */
XkbModsRec ignore_lock; /* modifiers to ignore when checking for grab */
unsigned int enabled_ctrls; /* 1 bit => corresponding boolean control enabled */
unsigned short repeat_delay; /* ms delay until first repeat */

unsigned short repeat_interval; /* ms delay between repeats */
unsigned short slow_keys_delay; /* ms minimum time key must be down to be ok */
unsigned short debounce_delay; /* ms delay before key reactivated */

February 5, 1996 Library Version 1.0/Document Revision 1.0 71

The X Keyboard Extension

10 Keyboard Controls

unsigned short mk_delay; /* ms delay to second mouse motion event */
unsigned short mk_interval; /* ms delay between repeat mouse events */
unsigned short mk_time_to_max; /* # intervals until constant mouse move */
unsigned short mk_max_speed; /* multiplier for maximum mouse speed */

short mk_curve; [* determines mouse move curve type */
unsigned short ax_options; /* 1 bit => Access X option enabled */
unsigned short ax_timeout; /* seconds until Access X disabled */

unsigned short axt _opts_mask; /* 1 bit => options to reset on Access X timeout */
unsigned short axt_opts_values; /* 1 bit => turn option on, 0=> off */

unsigned int axt_ctrls_mask; /* which bitsénabled_ctrlgo modify */

unsigned int axt_ctrls_values; /* values for new bitemabled_ctrlg/

unsigned char per_key_repeat[XkbPerKeyBitArraySize]; /* per key auto repeat */

} XkbControlsRec, *XkbControlsPtr;

The general purpose routines which work withXkbControlsRec structure use a

mask to specify which controls are to be manipulated. Table 10.6 lists these controls, the
masks used to select them in the general function edlisli parameter), and the data

fields in theXkbControlsRec structure which comprise each of the individual controls.
Also listed is the bit used to turn boolean controls on and off, and the section where each

control is described in more detail.

Table 10.6 Xkb Controls]

Control Selection Mask Relevant XkbControlsRecBoolean Control Secti

Control (which parameter) Data Fields

enabled_ctrls bit on

AccessXFeedback XkbAccessXFeedbackMask ax_options:
XkbAX_*FBMask

AccessXKeys

AccessXTimeout XkbAccessXTimeoutMask ax_timeout
axt_opts_mask
axt_opts_values
axt_ctrls_mask
axt_ctrls_values

AudibleBell

AutoReset

BounceKeys XkbBounceKeysMask debounce_delay

Detectable-

Autorepeat

EnabledControls XkbControlsEnabledMask enabled_ctrls

GroupsWrap XkbGroupsWrapMask groups_wrap

IgnoreGroupLock

IgnoreLockMods XkblgnoreLockModsMask ignore_lock

InternalMods XkbinternalModsMask internal

MouseKeys XkbMouseKeysMask mk_dflt_btn

MouseKeysAccel XkbMouseKeysAccelMask mk_delay
mk_interval
mk_time_to_max
mk_max_speed
mk_curve

Overlayl

XkbAccessXFeedbackMask 10.6.3

XkbAccessXKeysMask 10.6.1
XkbAccessXTimeoutMask 10.6.2

XkbAudibleBellMask 9.2

10.1.2
XkbBounceKeysMask 10.6.7

10.3.3
Non-Boolean Control 10.1.1
Non-Boolean Control 10.7.1

XkblgnoreGroupLockMask 10.7.3
Non-Boolean Control 5.1
Non-Boolean Control 5.1
XkbMouseKeysMask 10.5.1

XkbMouseKeysAccelMask 10.5.2

XkbOverlaylMask 10.4

February 5, 1996 Library Version 1.0/Document Revision 1.0 72

The X Keyboard Extension 10 Keyboard Controls

Table 10.6 Xkb Controls]

Control Con_trol Selection Mask Releva_nt XkbControlsRecBoolean Contro_l Secti
(which parameter) Data Fields enabled_ctrls bit on
Overlay?2 XkbOverlay2Mask 10.4
PerKeyRepeat XkbPerKeyRepeatMask per_key repeat Non-Boolean Control 10.3.1
RepeatKeys XkbRepeatKeysMask repeat_delay XkbRepeatKeysMask 10.3
repeat_interval

SlowKeys XkbSlowKeysMask slow_keys_delay XkbSlowKeysMask 10.6.6
StickyKeys XkbStickyKeysMask ax_options: XkbStickyKeysMask 10.6.8

XkbAX_TwoKeysMask
XkbAX_LatchToLockMask

Table 10.7 shows the actual values for the individual mask bits used to select controls for
modification, and to enable and disable the control. Note that the same mask bit is used to

specify general modifications to the parameters used to configure the cahiab) (and
to enable and disable the contrehébled_ctrls The anomalies in the table (no “ok” in

column) are for controls which have no configurable attributes; and for controls which are

not boolean controls, and therefore cannot be enabled or disabled.
Table 10.7 Controls Mask Bits

Mask Bit which or enabled_ctrls Value
changed_ctrls
XkbRepeatKeysMask ok ok (1L<<0)
XkbSlowKeysMask ok ok (1L<<1)
XkbBounceKeysMask ok ok (1L<<2)
XkbStickyKeysMask ok ok (1L<<3)
XkbMouseKeysMask ok ok (1L<<4)
XkbMouseKeysAccelMask ok ok (1L<<b)
XkbAccessXKeysMask ok ok (1L<<6)
XkbAccessXTimeoutMask ok ok (AL<<7)
XkbAccessXFeedbackMask ok ok (1L<<8)
XkbAudibleBellMask ok (1L<<9)
XkbOverlaylMask ok (1L<<10)
XkbOverlay2Mask ok (1L<<11)
XkblgnoreGroupLockMask ok (1L<<12)
XkbGroupsWrapMask ok (1L<<27)
XkblInternalModsMask ok (1L<<28)
XkblgnoreLockModsMask ok (1L<<29)
XkbPerKeyRepeatMask ok (1L<<30)
XkbControlsEnabledMask ok (1L<<31)
XkbAccessXOptionsMask ok ok (XkbStickyKeysMask |
XkbAccessXFeedbackMask)
XkbAllIBooleanCtrlsMask ok (Ox00001FFF)
XkbAllControlsMask ok (OXF8001FFF)

The individual fields of th&XkbControlsRec structure are described below.

February 5, 1996 Library Version 1.0/Document Revision 1.0

73

The X Keyboard Extension 10 Keyboard Controls

mk_dflt_btn

mk_dflt_btnis an attribute of th&louseKeys control (see section 10.5). It specifies the
mouse button number to use for keyboard simulated mouse button operations. It's value
should be one of the core symbBldtonl - Button5 .

num_groups

num_groupss not a part of any control, but is reported inXkbControlsRec structure
whenever any of its components are fetched from the server. It reports the number of
groups the particular keyboard configuration uses, and is computed automatically by the
server whenever the keyboard mapping changes.

groups_wrap

groups_wraps an attribute of th&roupsWrap control (see section 10.7.1). It specifies
the handling of illegal groups on a global basis. Valid valuegrmsps_wrapare shown
in Table 10.8.

Table 10.8 GroupsWrap options groups_wrapfield)

groups_wrap symbolic name value
XkbWrapIntoRange (0x00)
XkbClamplintoRange (0x40)
XkbRedirectintoRange (0x80)

Whengroups_wraps set taXxkbRedirectintoRange , its four low order bits specify
the index of the group to use.

internal

internalis an attribute of thinternalMods ~ control (see section 10.7.4). It specifies
modifiers to be consumed in the server and not passed on to clients when events are
reported. Valid values consist of any combination of the eight core modifieShifts:
Mask, LockMask , ControlMask , Mod1Mask - Mod5Mask

ignore_lock

ignore_lockis an attribute of thignoreLockMods control (see section 10.7.2). It speci-
fies modifiers to be ignored in grab calculations. Valid values consist of any combination
of the eight core modifier bitShiftMask , LockMask , ControlMask , Mod1Mask -
Mod5Mask

enabled_ctrls

enabled_ctrlss an attribute of thEnabledControls control (see section 10.1.1). It
contains one bit per boolean control. Each bit determines whether the corresponding con-
trol is enabled or disabled; a one bit means the control is enabled. The mask bits used to
enable these controls are listed in Table 10.7, using only those masks with “ok” in the
enabled_ctrlolumn.

repeat_delay and repeat_interval

repeat_delayandrepeat_intervahre attributes of thRepeatKeys control (see section
10.3.2).repeat_delays the initial delay before a key begins repeating, in milliseconds;
repeat_intervals the delay between subsequent key events, in milliseconds.

February 5, 1996 Library Version 1.0/Document Revision 1.0 74

The X Keyboard Extension 10 Keyboard Controls

slow_keys_delay

slow_keys delaig an attribute of th8lowKeys control (see section 10.6.6). Its value
specifies th&lowKeys acceptance delay period in milliseconds before a key press is
accepted by the server.

debounce_delay

debounce_delaig an attribute of thBounceKeys control (see section 10.6.7). Its value
specifies thd&ounceKeys delay period in milliseconds for which the key is disabled after
having been pressed before another press of the same key is accepted by the server.

mk_delay, mk_interval, mk_time_to _max, mk_max_speed, and mk_curve

mk_delaymk_interval mk_time_to_maxmk_max_spee@dndmk_curveare attributes of
theMouseKeysAccel control. Refer to section 10.5.2 for a description of these fields and
the units involved.

ax_options

Theax_optiondield contains attributes used to configure two different controls, the
StickyKeys control (see section 10.6.8) and #fkeeessXFeedback control (see sec-
tion 10.6.3). Theax_optiondield is a bitmask, and may include any combination of the
bits defined in Table 10.9.

Table 10.9 Access X Enable/Disable BitaX_optionsfield)

Access X Control ax_options bit value

AccessXFeedback XkbAX SKPressFBMask (1L<<0)
XkbAX_SKAcceptFBMask (1L << 1)
XkbAX_FeatureFBMask (1L << 2)
XkbAX_ SlowWarnFBMask (1L << 3)
XkbAX_IndicatorFBMask (1L << 4)
XkbAX_StickyKeysFBMask (1L << 5)
XkbAX_SKReleaseFBMask (1L << 8)
XkbAX_SKRejectFBMask (1L << 9)
XkbAX_ BKRejectFBMask (1L << 10)
XkbAX_DumbBellFBMask (1L << 11)

StickyKeys XkbAX_TwoKeysMask (1L << 6)
XkbAX_LatchToLockMask (AL << 7)
XkbAX_AllOptionsMask (OXFFF)

The fields pertaining to each control are relevant only wheoadfiteol is enabledX{kbAc-
cessXFeedbackMask or XkbStickyKeysMask bit is turned on in thenabled_cntrls
field).

Xkb provides a set of convenience macros for working witlath@ptiondield of an
XkbControlsRec structure:

#defineXkbAX_NeedOption(c,w) ((c)->ax_options&(w))

TheXkbAX_NeedOptiomacro is useful for determining if a particular AccessX option is
enabled or not. It accepts a pointer tox&ahControlsRec structure and a valid mask bit

February 5, 1996 Library Version 1.0/Document Revision 1.0 75

The X Keyboard Extension 10 Keyboard Controls

from Table 10.9. If the specified mask bit in #iee optiondield of the controls structure
is set, the macro returns the mask bit. Otherwise, it returns zero. Thus,

XkbAX_NeedOption(ctlrec, XkbAXLatchToLockMaslk

is non-zero if the latch to lock transition for latching keys is enabled, and zero if it is dis-
abled. Note thaXkbAX NeedOptioanly determines whether or not the particular capa-
bility is configured to operate; thékbAccessXFeedbackMask bit must also be turned

on inenabled_ctridor the capability to actually be functioning.

#defineXkbAX_AnyFeedback(c) ((c)->enabled_ctris&XkbAccessXFeedbackMask)

The XkbAX_AnyFeebaakiacro accepts a pointer to dkbControlsRec structure and
tells whether théccessXFeedback control is enabled or not. If tiecessXFeedback
control is enabled, the macro retudidAccessXFeedbackMask . Otherwise, it returns
Zero.

#defineXkbAX_NeedFeedbackc,w)
(XkbAX_AnyFeedback(c)&&XkbAX_ NeedOption(c,w))

The XkbAX_NeedFeedbaadkacro is useful for determining if both tAecessXFeed-

back control and a particular AccessX feedback option are enabled. The macro accepts a
pointer to arXkbControlsRec structure and a feedback option from the table above. If
both theAccessXFeedback control and the specified feedback option are enabled, the
macro returngrue . Otherwise it returnbalse .

ax_timeout, axt_opts_mask, axt_opts_values, axt_ctrls_mask, and
axt_ctrls_values

ax_timeoutact_opts_maslkaxt_opts_valuesaxt_ctrls_maskandaxt_ctrls_valuesre
attributes of thé\ccessXTimeout control. Refer to section 10.6.2 for a description of
these fields and the units involved.

per_key repeat

Theper_key_repedield mirrors theauto_repeatdield of the core protocotKeyboard-

State structure: changing treuto_repeatdield automatically changeser_key repeat

and vice-versa. It is provided for convenience and to reduce protocol traffic. For example,
to obtain the individual repeat key behavior as well as the repeat delay and ratieh-call
GetControls If theper_key_repeatvere not in this structure, you would have to call both
XGetKeyboardContrakndXkbGetControlgo get this information. The bits correspond to
keycodes. The first seven keys (keycodes 1-7) are indicapen ikey repedd], with bit
position 0 (low order) corresponding to the fictitious keycode 0. Following array elements
correspond to 8 keycodes per element. A 1 bit indicates the key is a repeating key.

10.9 Querying Controls
Call XkbGetControlgo find the current state of Xkb server controls.
StatusXkbGetControls(display, which, xkb)

Display * display; [* connection to X server */
unsigned long which /* mask of controls requested */
XkbDescPtr xkby [* keyboard description for controls information*/

February 5, 1996 Library Version 1.0/Document Revision 1.0 76

The X Keyboard Extension 10 Keyboard Controls

XkbGetControlgjueries the server for the requested control information, waits for a reply,
and then copies the server’s values for the requested information istdgtstructure of
thexkbargument. Only those components specified bywviieh parameter are copied.
Valid values fowhichare any combination of the masks listed in Table 10.7 on page 74
that have “ok” in thavhich column.

If xkb->ctrls is NULL, XkbGetControlsallocates and initializes it before obtaining the val-
ues specified byhich If xkb->ctrls is notNULL, XkbGetControlsnodifies only those
portions ofxkb->ctrls corresponding to the values specifiedddyich

XkbGetControlseturnsSuccess if successful; otherwise it returBsdAlloc if it can-
not obtain sufficient storagBadMatch if xkbis NULLorwhichis empty, oBadimple-
mentation

To free thectrls member of a keyboard description, XdéFreeControlgsee section
10.12)

Thenum_groupsield in thectrls structure is always filled in bykbGetControlsregard-
less of which bits are selected which

10.10 Changing Controls

There are two ways to make changes to controls: either change a local copy keyboard
description and cakKkbSetControlsor, to reduce network traffic, use #kbCon-
trolsChangesRec structure and cakkbChangeControls

To change the state of one or more controls, first modifgttiestructure in a local copy
of the keyboard description and then X&bSetControl$o copy those changes to the X

server.

Bool XkbSetControls(display, which, xkb)
Display * display, [* connection to X server */
unsigned long which /* mask of controls to change */
XkbDescPtr xkb; /* ctrls field contains new values to be set */

For each bit that is set in tinhich parameterXkbSetControlsends the corresponding
values from thexkb->ctrls field to the server. Valid values farhichare any combination
of the masks listed in Table 10.7 on page 74 that have “ok” iwltieh column.

If xkb->ctrls is NULL, the server does not support a compatible version of Xkb, or the Xkb
extension has not been properly initializE#bSetControlseturnsFalse . Otherwise, it
sends the request to the X server and reftnunes .

Note that changes to attributes of controls inXkieControlsRec structure are only
apparent when the associated control is enabled, although the corresponding values are
still updated in the X server. For example, tbpeat_delayandrepeat_intervafields are
ignored unless thRepeatKeys control is enabled (that is, the X server’s equivalent of
xkb->ctrls hasXkbRepeatKeyMask set inenabled_ctrlk It is permissible to modify the
attributes of a control in one call to XkbSetControls, and enable the control in a subse-
quent call. See section 10.1.1 for more information on enabling and disabling controls.

Note that theenabled_ctridield is itself a control — th&nabledControls control. As

such, to set a specific configuration of enabled and disabled boolean controls, you must set
enabled_ctrigo the appropriate bits to enable only the controls you want and disable all
others, then specify thdkbControlsEnabledMask in a call toXkbSetControlsSince

February 5, 1996 Library Version 1.0/Document Revision 1.0 77

The X Keyboard Extension 10 Keyboard Controls

this is somewhat awkward if all you want to do is enable and disable controls, and not
modify any of their attributes, a convenience function is also provided for this purpose
(XkbChangeEnabledContrglsection 10.1.1).

10.10.1The XkbControlsChangesRec Structure

10.11

The XkbControlsChangesRec structure allows applications to track modifications to
anXkbControlsRec structure and thereby reduce the amount of traffic sent to the server.
The sameXkbControlsChangesRec structure may be used in several successive modi-
fications to the samekbControlsRec structure, then subsequently used to cause all of
the changes, and only the changes, to be propagated to the servébThre
trolsChangesRec structure is defined below:

typedef struct _XkbControlsChanges {

unsigned int changed_ ctrls; /* bits indicating changed control data */
unsigned int enabled_ctrls_changes; /* bits indicating enabled/disabled controls */
Bool num_groups_changed; True if number of keyboard groups changed */

} XkbControlsChangesReg¢*XkbControlsChangesPtr;

Thechanged_ctrldield is a mask specifying which logical sets of data in the controls
structure have been modified. In this context, modified meenthat is, if a value is set

to the same value it previously contained, it has still been modified, and is noted as
changed. Valid values fahanged_ctrlare any combination of the masks listed in Table
10.7 on page 74 that have “ok” in tbleanged_ctrlxolumn. Setting a bit implies the cor-
responding data fields from the “Relevant XkbControlsRec Data Fields” column in Table
10.6 have been modified. Tkeabled_ctrls_changédld specifies which bits in the
enabled_ctridield have changed. If the number of keyboard groups has changed, the
num_groups_changdeeld is set tolrue .

If you have an Xkb description with controls which have been modified, ak&&on-
trolsChangesRec which describes the changes which have been madeki@hange-
Controlsfunction provides a flexible method for updating the controls in a server to match
those in the changed keyboard description.

Bool XkbChangeControls(dpy, xkb, changés
Display * dpy. [* connection to X server */
XkbDescPtr xkby [* keyboard description with changellb->ctrls */
XkbControlsChangesPtr changes /* which parts ofxkb->ctrls have changed */

XkbChangeControlsopies any controls fields specified ddyangedrom the keyboard
description controls structunekb->ctrls, to the server specified lapy.

Tracking Changes to Keyboard Controls

Whenever a field in the controls structure changes in the server’'s keyboard description,
the server sends afkbControlsNotify event to all interested clients.To receXid-
ControlsNotify events under all possible conditions, éKbSelectEven{see section
4.3) and pas&kbControlsNotifyMask in bothbits_to_changandvalues_for_bits

To receivexkbControlsNotify events only under certain conditions, ¢étbSelect-
EventDetailausingXkbControlsNotify as theevent_typend specifying the desired
state changes inits_to_changendvalues_for_bitsising mask bits from Table 10.7 on
page 74.

February 5, 1996 Library Version 1.0/Document Revision 1.0 78

The X Keyboard Extension 10 Keyboard Controls

The structure for th&kbControlsNotify event is defined as follows:
typedef struct {

int type; /* Xkb extension base event code */
unsigned long serial; I* X server serial number for event */
Bool send_event; [Arue => synthetically generated */
Display * display; [* server connection where event generated */
Time time; [* server time when event generated */
int xkb_type; [*XkbCompatMapNotify — */
int device; [* Xkb device id, will not b&XkbUseCoreKbd */

unsigned int changed_ctrls; /* bits indicating which controls data have changed?*/
unsigned int enabled_ctrls; /* controls currently enabled in server */
unsigned int enabled_ctrl_changes; /* bits indicating enabled/disabled controls */

int num_groups; /* current number of keyboard groups */
KeyCode keycode; [* 1= 0 => keycode of key causing change */
char event_type; [* Type of event causing change */

char req_major; /* major event code of event causing change */
char req_minor; /* minor event code of event causing change */

} XkbControlsNotifyEvent ;

Thechanged_ctridield specifies the controls components that have changed and consists
of bits taken from the masks defined in Table 10.7 on page 74, with “ok” in the
changed_ctrisolumn.

The controls currently enabled in the server are reported entiged_ctridield. If any
controls were just enabled or disabled (that is, the contents efétded_ctridield
changed), they are flagged in #eabled_ctrl_changeféeld. The valid bits for these

fields are the masks listed in Table 10.7, with “ok” inénabled_ctrlscolumn. The
num_groupdield reports the number of groups bound to the key belonging to the most
number of groups, and is automatically updated when the keyboard mapping changes.

If the change was caused by a request from a clieriteffmdeandevent_typdields are
set to0 and theaeq_majorandreq_minorfields identify the request. Tlieq_majorvalue
is the same as thmajor extension opcod®therwisegvent_types set to the type of event
that caused the change (on&ef/Press , KeyRelease , DeviceKeyPress , Device-
KeyRelease , ButtonPress or ButtonRelease), andreq_majorandreq_minorare
undefined. Ifevent_typés KeyPress , KeyRelease , DeviceKeyPress , or Device-
KeyRelease , thekeycoddield is set to the key that caused the changevdht typés
ButtonPress or ButtonRelease , keycodecontains the button number.

When a client receives atkbControlsNotify event, it can note the changes in a
changes structure usitxkbNoteControlsChanges

void XkbNoteControlsChangegchangesnew wanted
XkbControlsChangesPtr changes /* records changes indicated by new */
XkbControlsNotifyEvent * new /* tells which things have changed */
unsigned int wanted /* tells which parts of new to record in changes */

Thewantedparameter is a bitwise inclusive OR of bits taken from the set of masks speci-
fied in Table 10.7, with “ok” in thehanged_ctri£olumn.XkbNoteControlsChange®p-

ies any changes reportednewand specified invantedinto the changes record specified

by old.

February 5, 1996 Library Version 1.0/Document Revision 1.0 79

The X Keyboard Extension 10 Keyboard Controls

UseXkbGetControlsChangde update a local copy of a keyboard description with the
changes previously noted by one or more calkkioNoteControlsChanges.

StatusXkbGetControlsChangegdpy, xkh change¥

Display * dpy; [* connection to X server */
XkbDescPtr xkby I* xkb->ctrls will be updated */
XkbNameChangesPtrchanges /* indicates which parts ofkb->ctrlsto update */

XkbGetControlsChangesxamines thehangegarameter, queries the server for the nec-
essary information, and copies the results intockie>ctrls keyboard description. If the
ctris field of xkbis NULL, XkbGetControlsChangeslocates and initializes it. To free the
ctrls field, useXkbFreeControlgsee section 10.12).

XkbGetControlsChangesturnsSuccess if successful, and can gener8eadAlloc
Badimplementation andBadMatch errors.

10.12 Allocating and Freeing an XkbControlsRec

The need to allocate atkbControlsRec structure seldom arises; Xkb creates one when
an application callXkbGetControl®r a related function. For those situations where there
is not anXkbControlsRec structure allocated in thékbDescRec, allocate one by call-
ing XkbAllocControls

StatusXkbAllocControls (xkb, which
XkbDescPtr xkby [* Xkb description in which to allocate ctrls rec */
unsigned int which /* mask of components afrls to allocate */

XkbAllocControlsallocates thetrls field of thexkb parameter, initializes all fields to 0,
and return$Success . If thectrls field is notNULL XkbAllocControlssimply returnsSuc-

cess . If xkbis NULL, XkbAllocControlseports eéBadMatch error. If thectrls field could
not be allocated, it reportsBadAlloc error.

Thewhichmask specifies the individual fields of tttels structure to be allocated and can
contain any of the valid masks defined in Table 10.7. Since none of the currently existing
controls have any structures associated with temnchis currently of little practical

value in this call.

To free memory used by tltrls member of aiXkbDescRec structure, us&XkbFree-

Controls:

void XkbFreeControls(xkb, which, free_all
XkbDescPtr xkby; /* Xkb description in which to free controls components */
unsigned int which /* mask of components afrls to free */
Bool free_alt /* True => free everything + ctrls itself */

XkbFreeControldrees the specified components of ths field in thexkb keyboard
description, and sets the corresponding structure component vaNigsltor 0. The
whichmask specifies the fields ofrls to be freed and can contain any of the controls
components specified in Table 10.7.

If free_allis True , XkbFreeControldrees every nomNULL structure component in the
controls, frees th&kbControlsRec structure referenced by th&ls member okkb, and
setsctrls to NULL.

February 5, 1996 Library Version 1.0/Document Revision 1.0 80

The X Keyboard Extension 11 X Library Controls

11

11.1

X Library Controls

The Xkb extension is composed of two parts: a server extension, and a client-side X
library extension. Chapter 10 discusses functions used to modify controls effecting the
behavior of the server portion of the Xkb extension. This chapter discusses functions used
to modify controls which effect only the behavior of the client portion of the extension;
these controls are known as Library Controls.

All of the Library Controls are boolean flags which may be enabled and disabled. The
controls can be divided into several categories:

» controls affecting general string lookups
» controls affecting compose processing
» controls affecting event delivery

There are two types of string lookups performeXhygokupStringThe first type

involves translating a single keycode into a string; the controls in the first category affect
this type of lookup. The second type involves translating a series of keysyms into a string;
the controls in the second category affect this type of lookup.

An Xkb implementation is required to support the programming interface for all of the
controls. However, an implementation may choose not to support the semantics associated
with the controls which deal with compose processing. In this case, a program which
accesses these controls should still function normally; however, the feedback which would
normally occur with the controls enabled may be missing.

Controls Affecting Keycode-to-String Translation

The first type of string lookups, which are here cafiedple string lookupsnvolves

translating a single keycode into a string. Because these simple lookups involve only a
single keycode, all of the information needed to do the translation is contained in the key-
board state in a single event. The controls affecting simple string lookups are:

ForcelLatin1Lookup
Consumel.ookupMods
LevelOneUsesShiftAndLock

11.1.1 ForcelLatin1Lookup

If the ForceLatin1Lookup control is enabledLookupStringnly returns strings using
the Latinl character set.FbrceLatin1Lookup is not enabled{LookupStringcan
return characters which are not in the Latinl set. By default, this control is disabled,
allowing characters outside of the Latinl set to be returned.

11.1.2 ConsumelLookupMods

Simple string lookups iXLookupStringnvolve two different translation phases. The first
phase translates raw device keycodes to individual keysyms. The second phase attempts to
map the resulting keysym into a string of one or more characters. In the first phase, some
of the modifiers are normally used to determine the appropriate shift level for a key.

The ConsumelLookupMods control determines whether or n¢itookupString consumes
the modifiers it uses during the first phase of processing (mapping a keycode to a key-
sym). When a modifier is consumed, it is effectively removed from the working copy of

February 5, 1996 Library Version 1.0/Document Revision 1.0 81

The X Keyboard Extension 11 X Library Controls

the keyboard state informatioflLookupStrings using, and appears to be unset for the
remainder of the processing.

If the ConsumeLookupMods control is enabled{LookupStringdoes not use the modifi-

ers used to translate the keycode of the event to a keysym when it is determining the string
associated with a keysym. For example, assume the keymap for the ‘A’ key only contains
the shift modifier and th€onsumeLookupMods control is enabled. If a user presses the

Shift key and thé\ key while theNum_Lock key is lockedXLookupStringises thé&hift

modifier when mapping the keycode for the ‘a’ key to the keysym for ‘A’; subsequently, it
only uses th&lumLock modifier when determining the string associated with the keysym
‘A

If the ConsumeLookupMods control is not enableXLookupStringuses all of the event
modifiers to determine the string associated with a keysym. This behavior mirrors the
behavior ofXLookupStringn the core implementation.

The ConsumeLookupMods control is unset by default. For more information on modifier
consumption, refer to Chapter 12.

11.1.3 AlwaysConsumeShiftAndLock

11.2

The AlwaysConsumeShiftAndLock control, if enabled, forcesLookupStringo con-
sume theShift andLock modifiers when processing all keys, even if the definition for
the key type does not specify these modifiers. AlhvaysConsumeShiftAndLock con-
trol is unset by default. See section 15.2 on page 127 for a discussion of key types.

Controls Affecting Compose Processing

The second type of string lookup performedXhypokupStringnvolves translating a

series of keysyms into a string. Because these lookups can involve more than one key
event, they requirgLookupStringo retain some state information between successive
calls. The process of mapping a series of keysyms to a string is kn@empsse pro-
cessing The controls affecting compose processing are:

ConsumeKeysOnComposeFail
ComposeLED
BeepOnComposeFall

Because different vendors have historically used different algorithms to implement com-
pose processing, and these algorithms may be incompatible with the semantics required
by the Xkb compose processing controls, implementation of the compose processing con-
trols is optional in an Xkb implementation.

11.2.1 ConsumeKeysOnComposeFalil

Some compose processing algorithms signal the start of a compose sequence by a key
event meaning “start composErhe subsequent key events should normally result in a
valid composition yielding a valid translation to a string. If the subsequent key events do
not have a valid translation, some decision must be made about what to do with the key
events which were processed while attempting the compos€aonisameKeysOnCom-

1. Another possibility is to have the compose processing simply be the result of a finite state acceptor; a compose
sequence would never fail for a properly written finite state acceptor.

February 5, 1996 Library Version 1.0/Document Revision 1.0 82

The X Keyboard Extension 11 X Library Controls

poseFail control allows a client to specify what happens with the key exrdskup-
String has been considering when it reaches a dead end in a compose sequence.

If the ConsumeKeysOnComposeFail control is set, all keys associated with a failed
compose sequence should be consumed (discarded)JbmsameKeysOnCompose-

Fail control is not set, the key events associated with a failed compose sequence should
be processed as a normal sequence of key events.

The ConsumeKeysOnComposeFail control is disabled by default.

11.2.2 ComposeLED

The ComposeLEDcontrol allows a client to specify whether or not an indicator should be
set and cleared to provide feedback when compose processing is in progress. The control
does not specify which indicator should be used; the mapping for this is up to the individ-
ual implementation. If th€omposeLEDcontrol is enabled, it specifies that an indicator
should be set when a compose sequence is in progress, and cleared when one is not in
progress. Th€omposeLEDcontrol is disabled by default.

While the Xkb extension does not specify the type of type of indicator to be used when the
ComposeLEDcontrol is implemented, a consistent convention between implementations
is to everyone’s benefit. If a named indicator is used for this purpose, the recommended
name is Compose’. Note that some implementations may use an unnamed, custom hard-
ware LED for this purpose.

11.2.3 BeepOnComposeFall

TheBeepOnComposeFail control allows a client to specify whether or not a bell should
be activated to provide feedback when a compose sequence fails. The control does not
specify the type of bell which should be used; the mapping for this is up to the individual
implementation. If theepOnComposeFail control is enabled, it specifies that a bell
should be activated when a compose sequence fail8eEp©nComposeFail control is
disabled by default. If implemented, the bell should be activated ¥&ingellor XkbDe-
viceBell

While the Xkb extension does not specify the type of bell to be used whBagp®@n-
ComposeFail control is implemented, a consistent convention between implementations
is to everyone’s benefit. If a named bell is used for this purpose, the recommended name is
“ComposeFail ”

11.3 Controls Effecting Event Delivery

11.3.1 IgnoreNewKeyboards

When Xkb is initialized, it implicitly forces requests fdewKeyboardNotify events.

These events may be used by the Xkb library extension internally; they are normally trans-
lated into core protocdappingNotify events before being passed to the client. While
delivering the event to the client is appropriate in most cases, it is not appropriate for some
clients which maintain per-key data structures. This is because once the server has sent a
NewKeyboardNotify event, it is free to send the client events for all keys in the new
range, and that range may be outside of the per-key data structures the client is maintain-
ing.

February 5, 1996 Library Version 1.0/Document Revision 1.0 83

The X Keyboard Extension 11 X Library Controls

ThelgnoreNewKeyboards control, if enabled, prevents Xkb from mappMegwvKey-
boardNotify ~ events to cormMappingNotify events and passing them to the client. The
control is initially disabled.

11.4 Manipulating the Library Controls

The Library Controls are manipulated using functions which deal with bitmasks to indi-
cate which controls to manipulate. The controls are identified by the masks defined in

Table 11.1
Table 11.1 Library Control Masks

Library Control Mask Value
XkbLC ForceLatinlLookup (1<<0)
XkbLC_ConsumeLookupMods 1<<1)
XKkbLC_AlwaysConsumeShiftAndLock 1<<2)
XkbLC IgnoreNewKeyboards (1<<3)
XkbLC_ConsumeKeysOnComposeFail (1<<29)
XkbLC_ComposeLED (1 << 30)
XkbLC_BeepOnComposeFail (1<<31)
XkbLC_AlIControls (0xc0000007)

11.4.1 Determining which Library Controls are Implemented

To determine which Library Controls are actually implemented X¢ddXlibControlsim-
plemented

unsigned inXkbXlibControlsimplemented (display)
Display * display, [* connection to X server */

XkbXlibControlsimplementegturns a bitmask indicating the controls actually imple-
mented in the Xkb library, and is composed of an inclusive OR of bits from Table 11.1.

11.4.2 Determining the State of the Library Controls
To determine the current state of the Library Controls XdddiGetXlibControls

unsigned inXkbGetXlibControls (display)
Display * display; [* connection to X server */

XkbGetXlibControlseturns the current state of the Library Controls as a bit mask which is
an inclusive OR of the control masks from Table 11.1.for the controls that are enabled.
For the optional compose processing controls, the fact that a control is enabled does not
imply that it is actually implemented.

11.4.3 Changing the State of the Library Controls
To change the state of the Library Controls, &lhSetXlibControls
Bool XkbSetXlibControls (display, bits_to_change, values_for_bits

Display * display, [* connection to X server */
unsigned long bits_to_change [* selects controls to be modified */
unsigned long values_for_bits [* turns selected controls on (1) or off (0) */

February 5, 1996 Library Version 1.0/Document Revision 1.0 84

The X Keyboard Extension 11 X Library Controls

XkbSetXlibControlsnodifies the state of the controls selectetity to_changeonly the
controls selected hyits to_changeare modified. If the bit corresponding to a control is
on inbits_to_changand also on inalues_for_bitsthe control is enabled. If the bit corre-
sponding to a control is on bits_to _changdut off invalues_for_bitsthe control is dis-
abled.bits_to_changeshould be an inclusive OR of bits from Table 11.1.

February 5, 1996 Library Version 1.0/Document Revision 1.0 85

The X Keyboard Extension 12 Interpreting Key Events

12 Interpreting Key Events

Xkb provides functions to help developers interpret key events without having to directly
interpret Xkb data structures. Xkb also modifies the behavior of several core X library
functions.

12.1 Effects of Xkb on the Core X Library

When support for Xkb is built into the X library, t&®penDisplayoutine looks for a
compatible version of Xkb on the server. If it finds a compatible version, it initializes the
extension and enabl@splicit supportfor Xkb in a number of X library functions. This

makes it possible for clients to take advantage of nearly all Xkb features without having to
be rewritten or even recompiled, if they are built with shared libraries. This implicit sup-
port is invisible to most clients, but it can have side-effects, so the extension includes ways
to control or disable it.

12.1.1 Effects of Xkb on Event State

BecauseXOpenDisplaynitializes Xkb, some events contain an Xkb description of the
keyboard state instead of that normally used by the core protocol. See section 17.1.1 for
more information about the differences between Xkb keyboard state and that reported by
the core protocol.

12.1.2 Effects of Xkb on MappingNotify Events

When Xkb is missing or disabled, the X library tracks changes to the keyboard mapping
usingMappingNotify ~ events. Whenever the keyboard mapping is changed, the server
sends all clients BlappingNotify ~ event to report the change. When a client receives a
MappingNotify event, it is supposed to cxlRefreshKeyboardMappirtg update the
keyboard description used internally by the X library.

The X Keyboard Extension usgkbMapNotify andXkbNewKeyboardNotify events

to track changes to the keyboard mapping. When an Xkb-aware client receives either
event, it should calkkbRefreshKeyboardMappirig update the keyboard description

used internally by the X library. To avoid duplicate events, the X server does not send core
protocolMappingNotify ~ events to a client that has selectedXkitMapNotify events.

The implicit support for Xkb selects fotkbMapNotify events. This means that clients
that do not explicitly use Xkb but which are using a version of the X library that has
implicit support for Xkb do not receivdappingNotify events over the wire. Clients

that were not written with Xkb in mind do not recognize or properly handle the new Xkb
events, so the implicit support converts thervisgpingNotify ~ events which report
approximately the same information, unless the client has explicitly selected for the Xkb
version of the event.

An Xkb-capable X server does not send events from keys that fall outside the legal range
of keycodes expected by that client. Once the server sends a chtdiNewKeyboard-

Notify — event, it reports events from all keys because it assumes that any client which has
receieved aiXxkbNewKeyboardNotify ~ event expects key events from the new range of
keycodes. The implicit support for Xkb asks ¥xbNewKeyboardNotify ~ events, so the

range of keycodes reported to the client might vary without the client’'s knowledge. Most
clients don’t really care about the range of legal keycodes, but some clients maintain
information about each key and might have problems with events that come from unex-

February 5, 1996 Library Version 1.0/Document Revision 1.0 86

The X Keyboard Extension 12 Interpreting Key Events

pected keys. Such clients can setXkbLC IgnoreNewKeyboards library control (see
section 11.3.1 on page 84) to prevent the implicit support from requesting notification of
changes to the legal range of keycodes.

12.1.3 X Library Functions Affected by Xkb
The following X library functions are modified by Xkb:

XKeycodeToKeysym
XKeysymToKeycode
XLookupKeysym
XLookupString
XRefreshKeyboardMapping
XRebindKeysym

The implicit support for Xkb replaces a number of X library functions with versions that
understand and use the X Keyboard Extension. In most cases, the semantics of the new
versions are identical to those of the old, but there are occasional visible differences. This
section lists all of the functions that are affected, and the differences in behavior, if any,
that are visible to clients.

The XKeycodeToKeysyfanction reports the keysym associated with a particular index

for a single key. The index specifies a column of symbols in the core keyboard mapping
(that is, as reported by the core protaGetKeyboardMappingequest). The order of the
symbols in the core mapping does not necessarily correspond to the order of the symbols
used by Xkb; section 17.1.3 describes the differences.

The XKeysymToKeycodeanction reports a keycode to which a particular keysym is

bound. When Xkb is missing or disabled, this function looks in each column of the core
keyboard mapping in turn, and returns the lowest numbered key that matches in the lowest
numbered group. When Xkb is present, this function uses the Xkb ordering for symbols,
instead.

The XLookupKeysyrfunction reports the symbol in a specific column of the key associ-
ated with an event. Whether or not Xkb is present, the column specifies an index into the
core symbol mapping.

The XLookupStringunction reports the symbol and string associated with a key event,
taking into account the keycode and keyboard state as reported in the event. When Xkb is
disabled or missing{LookupStringuses the rules specified by the core protocol and

reports only ISO Latin-1 characters. When Xkb is presdmpkupStringuses the

explicit keyboard group, key types and rules specified by Xkb. When Xkb is present,
XLookupStrings allowed, but not required, to return strings in character sets other than
ISO Latin-1, depending on the current locale. If any key bindings are defihedkup-
Stringdoes not use any consumed modifiers (see section 11.1.2 and section 15.2) to deter-
mine matching bindings.

TheXRefreshKeyboardMappirfgnction updates the X library’s internal representation of
the keyboard to reflect changes reportedWagpingNotify events. When Xkb is miss-

ing or disabled, this function reloads the entire modifier map or keyboard mapping. When
Xkb is present, the implicit Xkb support keeps track of the changed components reported
by eachxkbMapNotify event and updates only those pieces of the keyboard description
that have changed. If the implicit support has not noted any keyboard mapping changes,
XRefreshKeyboardMappingpdates the entire keyboard description.

February 5, 1996 Library Version 1.0/Document Revision 1.0 87

The X Keyboard Extension 12 Interpreting Key Events

The XRebindKeysyrfunction associates a string with a keysym and a set of modifiers.
Xkb does not directly change this function, but it does affect the way that the state
reported in the event is compared to the state specifisReébindKeysymWhen Xkb is
missing or disabledLookupStringeturns the specified string if the modifiers in the

event exactly match the modifiers from this call. When Xkb is present, any modifiers used
to determine the keysym are consumed and are not used to look up the string.

12.2 Xkb Event and Keymap Functions

To find the keysym bound to a particular key at a specified group and shift level, call

XkbKeycodeToKeysym

KeySymXkbKeycodeToKeysyn{dpy, kc, group, levil
Display * dpy; [* connection to X server */
KeyCode kc; /* key of interest */
unsigned int group; /* group of interest */
unsigned int level; I* shift level of interest */

XkbKeycodeToKeysyraturns the keysym bound to a particular group and shift level for a
particular key on the core keyboardkdfis not a legal keycode for the core keyboard, or if
group or level are out of range for the specified kékbKeycodeToKeysyraturns

NoSymbol .
To find the set of modifiers bound to a particular keysym on the core keyboard, call
XkbKeysymToModifiers
unsigned inXkbKeysymToModifiers(dpy, k9
Display * dpy; /* connection to X server */
KeySym ks [* keysym of interest */

XkbKeysymToModifiends the set of modifiers currently bound to the keyggon the
core keyboard. The value returned is the mask of modifiers bound to the Keygfy/mo
modifiers are bound to the keysyKkbKeysymToModifiereturns zero; otherwise it
returns the inclusive OR of zero or more of the followiigftMask , ControlMask
LockMask , Mod1Mask, Mod2Mask, Mod3Mask, Mod4Mask andMod5Mask

Call XkbLookupKeySyno find the symbol associated with a key for a particular state.
Bool XkbLookupKeySym (dpy, key state mods_rtrn sym_rtrj

Display * dpy, [* connection to X server */

KeyCode key, * key for which symbols are to be found */

unsigned int state [* state for which symbol should be found */

unsigned int * mods_rtrn /* backfilled with unconsumed modifiers */

KeySym * sym_rtrn * backfilled with symbol associated with key + state */

XkbLookupKeySyis the equivalent of the co¥ookupKeySyrfunction. For the core
keyboard, given a keycodkeyand an Xkb statstate XkbLookupKeySymeturns the
symbol associated with the key sym_rtrnand the list of modifiers that should still be
applied inmods_rtrn Thestateparameter is the state froniKayPress or KeyRelease
event.XkbLookupKeySymeturnsTrue if it succeeds.

February 5, 1996 Library Version 1.0/Document Revision 1.0 88

The X Keyboard Extension 12 Interpreting Key Events

Call XkbLookupKeyBindingp find the string bound to a key ByrebindKeySym
XkbLookupKeyBindings the equivalent of the cokookupStringunction.

int XkbLookupKeyBinding (dpy sym state buf, nbytesextra_rtrr)

Display * dpy, [* connection to server */

KeySym sym /* symbol to be looked up */

unsigned int state [* state for which string is to be looked up */
char * buf, [* buffer into which returned string is written */
int nbytes [* size of buffer in bytes */

int * extra_rtrr [* backfilled with number bytes overflow */

XRebindKeysyrhinds an ASCII string to a specified keysym, so that the string and key-
sym are returned when the key is pressed and a specified list of modifiers are also being
held downXkbLookupKeyBindingeturns inbufthe string associated with the keysym
symand modifier statetate bufis NULLterminated unless there’s an overflow. If the

string returned is larger thanibytes a count of bytes that does not fit into the buffer is
returned inextra_rtrn XkbTranslateKeySymeturns the number of bytes that it placed

into buf.
To find the string and symbol associated with a keysym for a given keyboard state, call
XkbTranslateKeySym
int XkbTranslateKeySym(dpy, sym_inoutmods buf, nbytesextra_rtrn)
Display * dpy, [* connection to X server */
KeySym * sym_inout /* symbol to be translated; result of translation */
unsigned int mods /* modifiers to apply teym_inout/
char * buf, /* buffer into which returned string is written */
int nbytes [* size of buffer in bytes */
int * extra_rtrrn /* number of bytes overflow*/

XkbTranslateKeySyupplies the transformations specifiedniodsto the symbol speci-
fied by sym_inoutlt returns inbuf the string, if any, associated with the keysym for the
current locale. If the transformationsnmodschanges the keysymym_inouis updated
accordingly. If the string returned is larger thdoytes a count of bytes that does not fit
into the buffer is returned iextra_rtrn XkbTranslateKeySyneturns the number of bytes
it placed intaouf.

To update the keyboard description that is internal to the X libraryXkbRefreshKey-
boardMapping

StatusXkbRefreshKeyboardMapping(event)
XkbMapNotifyEvent * event [* event initiating remapping */

XkbRefreshKeyboardMapping the Xkb equivalent of the corRefreshKeyboardMap-
ping function. It requests that the X server send the current key mapping information to
this client. A client usually invokeskbRefreshKeyboardMappiradter receiving an
XkbMapNotify eventXkbRefreshKeyboardMappimgturnsSuccess if it succeeds and
BadMatch if the event is not an Xkb event.

The XkbMapNotify event can be generated when some client K&alkSetMap
XkbChangeMapXkbGetKeyboardByNamer any of the standard X library functions that
change the keyboard mapping or modifier mapping.

February 5, 1996 Library Version 1.0/Document Revision 1.0 89

The X Keyboard Extension 12 Interpreting Key Events

To translate a keycode to a key symbol and modifiersX&ail ranslateKeyCode

Booll XkbTranslateKeyCode(xkb, key, mods, mods_rtrn, keysym_rtrn)

XkbDescPtr xkhby /* keyboard description to use for translation */
KeyCode key, [* keycode to translate */

unsigned int mods /* modifiers to apply when translatirkgy*/
unsigned int * mods_rtrn [* backfilled with unconsumed modifiers */
KeySym * keysym_rtrn /* keysym resulting from translation */

mods_ rtrnis backfilled with the modifiers consumed by the translation progesdsis a bit-
wise inclusive OR of the legal modifier maskiftMask , LockMask , ControlMask
Mod1Mask Mod2Mask, Mod3Mask, Mod4Mask, Mod5Mask The AlwaysConsume-
ShiftAndLock library control (see section 11.1.3), if enabled, cadddsT ranslateKeyCode
to consume shift and lockKkbTranslateKeyCodeturnsTrue if the translation resulted in
a keysym, andralse if it resulted inNoSymbol .

February 5, 1996 Library Version 1.0/Document Revision 1.0 90

The X Keyboard Extension 13 Keyboard Geometry

13

Keyboard Geometry

The Xkb description of a keyboard includes an opti&egboard geometnyhich

describes the physical appearance of the keyboard. Keyboard geometry describes the
shape, location and color of all keyboard keys or other visible keyboard components such
as indicators. The information contained in a keyboard geometry is sufficient to allow a
client program to draw an accurate two-dimensional image of the keyboard.

You can retrieve a keyboard geometry from an X server that supports Xkb, or you can
allocate it from scratch and initialize it in a client program. The keyboard geometry need
not have any correspondence with the physical keyboard that is connected to the X server.

Geometry measurements are specifidd T o units. The origin (0,0) is in the top left cor-

ner of the keyboard image. A component’s own origin is also its upper left corner. In some
cases a component needs to be drawn rotated. For example, a special keyboard may have a
section of keys arranged in rows in a rectangular area, but the entire rectangle may not be
in alignment with the rest of the keyboard, and instead, it is rotated from horizontal by

30°. Rotation for a geometry object is :~:pecifie€r/'gn)0 increments about its origin. An

example of a keyboard with rotated sections is shown in Figure 131.

O lBEEEE O
& B <
et
\ /

Rotated Sections

Figure 131 Rotated Keyboard Sections

Some geometry components includerarity, which indicates the order in which over-
lapping objects should be drawn. Objects should be drawn in order from highest priority
(0) to lowest (255).

The keyboard geometry’s top-lewddscription is stored inXkbGeometryRec structure.
This structure contains three types of information:

1. Lists of items, not used to draw the basic keyboard, but indexed by the geometry
descriptions which comprise the entire keyboard geometry (colors, geometry prop-
erties, key aliases, shapes)

2. A number of singleton items which describe the keyboard as a whole (keyboard
name, width and height, a color for the keyboard as a whole, and a color for key-
board key labels)

3. Alist of the keyboard’s sections and non-key doodads
The top-level geometry is described in more detail below.

The lists of items used by components of the keyboard geometry description is as follows:

February 5, 1996 Library Version 1.0/Document Revision 1.0 91

The X Keyboard Extension 13 Keyboard Geometry

« The top-level keyboard geometry description includes a list of MasColors (32)
color namesA color name is a string whose interpretation is not specified by Xkb.
TheXkbColorRec structure provides a field for this name as well as a pixel field.The
pixel field is a convenient place for an application to store a pixel value or color defini-
tion, if it needs to. All other geometry data structures refer to colors using their indices
in this global list.

« The top-level keyboard geometry description includes a ligeoimetry properties
A geometry property associates an arbitrary string with an equally arbitrary name.
Geometry properties can be used to provide hints to programs that display images of
keyboards, but they are not interpreted by Xkb. No other geometry structures refer to
geometry properties. As an example of a possible upeogferties consider the
pause/break key on most PC keyboards: the “break” symbol is usually on the front of
the key, and is often a different color. A program might set a property to:
LBL_PAUS = “{Pause/top/black,Break/front/red}”
and use the property information to draw the key with a front label as well as a top
label.

» The top-level keyboard geometry description includes a listyphliasegsee Chapter
18). Key aliases allow the keyboard layout designer to assign multiple key nhames to a
single key.

Note Key aliases defined in the geometry component of a keyboard mapping override those
defined in the keycodes component of the server database, which are stored in the
XkbNamesRec (xkb->name}g Therefore, consider the key aliases defined by the
geometry before considering key aliases supplied by the keycodes.

« The top-level keyboard geometry description includes a lishapesother keyboard
components refer to shapes by their index in this list. A shape consists of an arbitrary
name of type Atom and one or more closed-polygotiines All points in an outline
are specified relative to the origin of its enclosing shape, that is, whichever shape that
contains this outline in its list of outlines. One outline is the primary outline. The pri-
mary outline is by default the first outline, or it can be optionally specified yrthe
maryfield in theXkbShapeRec structure. A keyboard display application can
generate a simpler but still accurate keyboard image by displaying only the primary
outlines for each shape. Non-rectangular keys must include a rectaagptaxima-
tion as one of the outlines associated with the shape. The approximation is not nor-
mally displayed but can be used by very simple keyboard display applications to
generate a recognizable but degraded image of the keyboard.

TheXkbGeometryRec top-level geometry description contains the following information
which pertains to the keyboard as a whole:

« A keyboard symbolic nanut type Atom to help users identify the keyboard.

« Thewidth andheightof the keyboard, i/, For non-rectangular keyboards, the
width and height describe the smallest bounding-box that encloses the outline of the
keyboard.

« Thebase colownf the keyboard is the predominant color on the keyboard and is used
as the default color for any components whose color is not explicitly specified.

e Thelabel coloris the color used to draw the labels on most of the keyboard keys.

» Thelabel fontis a string which describes the font used to draw labels on most keys;
label fonts are arbitrary strings, since Xkb does not specify format or name space for
font names.

The keyboard is subdivided into nanssttionf related keys andoodads The sections
and doodads on the keyboard are listed inktiE¥seometryRec top-level keyboard
geometry description. Aectionis composed of keys that are physically together and logi-

February 5, 1996 Library Version 1.0/Document Revision 1.0 92

The X Keyboard Extension 13 Keyboard Geometry

cally related. Figure 13.2 shows a keyboard that is divided into four sectioclosdad
describes some visible aspect of the keyboard that is not a key and is not a section.

| Y

Editing rl:l OO0 OO0 OO ||
Function I o o |
o o o
Alpha— | 11O 00O L]
C 10000000 000c0—1) O |([0dd—
Keypad 1 1 o

A

Figure 13.2 Keyboard with Four Sections

13.1 Shapes and Outlines
A shape used to draw keyboard components and storeXkih@hapeRec structure, has:

* An arbitrary name of type Atom.

* Bounds (two x and y coordinates) that describe the corners of a rectangle containing
the shape’s top surface outline.

» Alist of one or more outlines (described below).

» Optional pointers to a primary and an approximation outline (described below) If either
of these pointers iSIULL, the default primary/approximation outline is the first one in
the list of outlines for the shape.

An outling, stored in akbOutlineRec structure, is a list of one or more points which
describes a single closed-polygon, as follows:

» Alist with a single point describes a rectangle with one corner at the origin of the shape
(0,0) and the opposite corner at the specified point.

» A list of two points describes a rectangle with one corner at the position specified by
the first point and the opposite corner at the position specified by the second point.

» A list of three or more points describes an arbitrary polygon. If necessary, the polygon
is automatically closed by connecting the last point in the list with the first.

» A non-zero value for theorner_radiusfield specifies that the corners of the polygon
should be drawn as circles with the specified radius.

All points in an outline are specified relative to the origin of the enclosing shape. Points in
an outline may have negative values for the X and Y coordinate.

One outline is the primary outline; a keyboard display application can generate a simple
but still accurate keyboard image by displaying only the primary outlines for each shape.
The default primary outline is the first in a shape’s list of outlines. Iptimeary field of

the XkbShapeRec structure is noNULL, it points to the primary outline. A rectangular
approximationrmust be included for non-rectangular keys as one of the outlines associated
with the shape; the approximation is not normally displayed but can be used by very sim-
ple keyboard display applications to generate a recognizable but degraded image of the
keyboard.

February 5, 1996 Library Version 1.0/Document Revision 1.0 93

The X Keyboard Extension 13 Keyboard Geometry

13.2 Sections

As noted above, a keyboard is subdivided s#ctionof related keys. Each section has

its own coordinate system — if a section is rotated, the coordinates of any components
within the section are interpreted relative to the edges that were on the top and left before
rotation. The components that make up a section, storedkbSectionRec , include:

An arbitrary name of type Atom.

A priority, to indicate drawing order. O is the highest priority, 255 the lowest.

Origin of the section, relative to the origin of the keyboard.

The width and height, and the angle of rotation.

A list of rows A row is a list of horizontally or vertically adjacent keys. Horizontal

rows parallel the (pre-rotation) top of the section and vertical rows parallel the
(pre-rotation) left of the section. All keys in a horizontal row share a common top coor-
dinate; all keys in a vertical row share a left coordinate. Figure 13.3 shows the alpha
section from the keyboard shown in Figure 13.2, divided into rows. Rows and keys are
defined below.

Row 1
Row 2 [IO I
Row 3 EZXAERIBRIRA B3 BRIRHER] BR X AR R

Row 4 EEEEEEEEEEEEE

Row5 [eI

Bl 2

Figure 13.3 Rows in a Section

An optional list ofdoodadsany type of doodad can be enclosed within a section.
Position and angle of rotation are relative to the origin and angle of rotation of the sec-
tions that contain them. Priority for doodads in a section is relative to the other compo-
nents of the section, not to the keyboard as a whole.

An optionaloverlaywith a name of type Atom and a list of overlay rows (described
below).

* Bounds (two x and y coordinates) that describe the corners of a rectangle containing
the entire section.

13.3 Rows and Keys

A row description XkbRowRec) consists of the coordinates of its origin relative to its
enclosing section, a flag indicating whether the row is horizontal or vertical, and a list of
keys in the row.

A key description XkbKeyRec) consists of a key name, a shape, a key color, and a gap.

The key name should correspond to one of the keys named in the keyboard names descrip-
tion, the shape specifies the appearance of the key, and the key color specifies the color of
the key (not the label on the key; the label color is stored iKkib&eometryRec). Keys

are normally drawn immediately adjacent to one another from left-to-right (or top-to-bot-
tom) within a row. The gap field specifies the distance between a key and its predecessor.

February 5, 1996 Library Version 1.0/Document Revision 1.0 94

The X Keyboard Extension 13 Keyboard Geometry

13.4 Doodads

Doodads can be global to the keyboard or part of a section. Doodads have symbolic names
of arbitrary length. The only doodad name whose interpretation is specified by Xkb is
“Edges”, which, if present, describes the outline of the entire keyboard.

Each doodad’s origin is stored in fields naneftlandtop, which are the coordinates of

the doodad’s origin relative to its enclosing object, whether it be a section or the top-level
keyboard. The priority for doodads which are listed in the top-level geometry are relative
to the other doodads listed in the top-level geometry and the sections listed in the top-level
geometry. The priority for doodads which are listed in a section are relative to the other
components of the section. Each doodad is stored in a structuretypifiald, which

specifies the type of doodad.

Xkb supports five types of doodads:

« Anindicator doodadlescribes one of the physical keyboard indicators. Indicator
doodads specify the shape of the indicator, the indicator color when itia lic6lo)
and the indicator color when it is daf{_color).

« An outline doodadiescribes some aspect of the keyboard to be drawn as one or more
hollow, closed polygons. Outline doodads specify the shape, color, and angle of rota-
tion about the doodad origin at which they should be drawn.

« A solid doodadiescribes some aspect of the keyboard to be drawn as one or more
filled polygons. Solid doodads specify the shape, color and angle of rotation about the
doodad origin at which they should be drawn.

« A text doodadiescribes a text label somewhere on the keyboard. Text doodads spec-
ify the label string, the font and color to use when drawing the label, and the angle of
rotation of the doodad about its origin.

« Alogo doodads a catch-all, which describes some other visible element of the key-
board. A logo doodad is essentially an outline doodad with an additional symbolic
name that describes the element to be drawn. If a keyboard display program recognizes
the symbolic name, it can draw something appropriate within the bounding region of
the shape specified in the doodad. If the symbolic name does not describe a recogniz-
able image, it should draw an outline using the specified shape, outline, and angle of
rotation. The Xkb extension does not specify the interpretation of logo names.

The structures these doodads are stored in and the valuesygehelds are shown in

Table 13.1.

Table 13.1 Doodad Types
Doodad Structure Type
indicator doodad XkblndicatorDoodadRec XkblIndicatorDoodad
outline doodad XkbShapeDoodadRec XkbOutlineDoodad
solid doodad XkbShapeDoodadRec XkbSolidDoodad
text doodad XkbTextDoodadRec XkbTextDoodad
logo doodad XkbLogoDoodadRec XkbLogoDoodad

13.5 Overlay Rows and Overlay Keys

An overlay row(XkbOverlayRowRec) contains a pointer to the row it overlays, and a list
of overlay keys

Each overlay key definitiorXkbOverlayKeyRec) indicates a key that can yield multiple
keycodes and consists of a field nameder, which specifies the primary name of the

February 5, 1996 Library Version 1.0/Document Revision 1.0 95

The X Keyboard Extension 13 Keyboard Geometry

key and a field namealver, which specifies the name for the key when the overlay key-
code is selected. The key specifiedimdermust be a member of the section that contains
the overlay key definition, while the key specifiecbirer must not be.

13.6 Drawing a Keyboard Representation
To draw a representation of the keyboard, draw in the following order:

Draw the top-level keyboard as a rectangle, using its width and height.
For each component (section or doodad) of the top-level geometry, in priority order:
If component is a section
For each row, in the order it appears in the section
Draw keys in the order they appear in the row
Draw doodads within the section in priority order.
Else draw doodad

February 5, 1996 Library Version 1.0/Document Revision 1.0 96

The X Keyboard Extension

13 Keyboard Geometry

13.7 Geometry Data Structures
In the following figures, a solid arrow denotes a pointer to an array of structures or a sin-
gleton structure. A dotted arrow denotes an index or a pointer into the array.
label_color XkbPropertyRec(s)
base_color (array)
properties M |
XkbColorRec(s) !
colors (array) | |
|
shapes : r‘ _
cections ! | outlines N o J_u
doodads E : approx - —)
| _ -
key aliases | __ L primary] XkbOutlineRec(s)
kDG R ol bounds H (array)
eometryRec ..
|| XkbShapeRec(s) \
! (array)
.' | XkbBoundsRec
Jﬂ ¥
I
|
XkbKeyAliasRec(s) / i ;
(array) ! -
| (See Figure 13.5
|
[: [: :
< | |' i
rows !
> keys | doodads (s)
doodads bounds | shape_ndx (array)
bounds
XkbRowRec(s) color_ndx
overlays L (array) XkbKeyRec(s)
XkbSectionRec(s) r (array)
(array)
C (See Figure 13.5
(See Figure 13.6 XkbBoundsRec

overlays (s)
(array)

doodads (s)
(array)

XkbBoundsRec

Figure 13.4 Xkb Geometry Data Structures

February 5, 1996

Library Version 1.0/Document Revision 1.0

97

The X Keyboard Extension 13 Keyboard Geometry
label_color XkbGeometryRec,
base_color XkbColorRec, and

XkbShapeRec
repeated from
properties Figure 16.4
colors
shapes
sections
doodads
key aliases
XkbGeometryRec
color_ndx |-...___
shape ndx | - S —
\\ \""-i |I Y
XkbShapeDoodadRec(s), ./ J_u
2% XkbColorRec(s)
e R (array)
A /’l’ /
AN /z// /
color_ndx //
,’/:<\ /
XkbTextDoodadRec(s) R
/’,” // R .
/’ ,’ / AN
doodads array /! P :
may contain S S > N
any of these RIS Jleemme 4 i
doodad types shape_ndx |---;7"" / % outlines
on_color_ndxi")/ L’ approx
/’ 4 /’ "
off_color_ndx |’)/ primary
/ ,’
XkbIndicatorDoodadRec(s) /// bounds i
/ /’
)/ XkbShapeRec(s)
4 .’ (array)

/
color_ndx .

shape_ndx

XkbLogoDoodadRec(s)

Figure 13.5 Xkb Geometry Data Structures (Doodads)

February 5, 1996

Library Version 1.0/Document Revision 1.0

98

The X Keyboard Extension

13 Keyboard Geometry

rows

-

doodads

bounds

overlays

XkbSectionRec(s)
(array)

section_under

rows

bounds N

XkbOverlayRec (s)
(array)

typedef struct _XkbGeometry {

> XkbSectionRec and
keys XkbRowRec
repeated from
bounds [P Figure 16.4
XkbRowRec(s)
(array)
-
XkbBoundsRec
I [
-
row_under L
keys B - J—u
XkbOverlayRowRec (s) XkbOverlayKeyRec(s)
(array) (array)
XkbBoundsRec

Figure 13.6 Xkb Geometry Data Structures (Overlays)

Atom
unsigned short
unsigned short
char *
XkbColorPtr
XkbColorPtr
unsigned short
unsigned short
unsigned short
unsigned short
unsigned short
unsigned short
unsigned short
unsigned short
unsigned short
unsigned short
unsigned short

[* top-level keyboard geometry structure */

name; [* keyboard name */
width_mm:; I* keyboard width TNV o */
height_mm; /* keyboard height'f/; o */
label_font; [* font for key labels */
label_color; * color for key labels - pointer into colors array */
base_color; [* color for basic keyboard - pointer into colors array */
sz_properties; [* size of properties array */
sz_colors; [* size of colors array */
sz_shapes; [* size of shapes array */
sz_sections; [* size of sections array */
sz_doodads; /* size of doodads array */

sz_key aliases; /* size of key aliases array */

num_properties; /* number of properties in the properties array */
num_colors; /* number of colors in the colors array */
num_shapes; /* number of shapes in the shapes array */
num_sections; /* number of sections in the sections array */
num_doodads; /* number of doodads in the doodads array */

February 5, 1996

Library Version 1.0/Document Revision 1.0 99

The X Keyboard Extension 13 Keyboard Geometry

unsigned short num_key_aliases; /* number of key aliases in the key */

XkbPropertyPtr properties; [* properties array */
XkbColorPtr colors; [* colors array */
XkbShapePtr shapes; [* shapes array */
XkbSectionPtr sections; [* sections array */
XkbDoodadPtr doodads; /* doodads array */
XkbKeyAliasPtr key aliases; /* key aliases array */

} XkbGeometryRec*XkbGeometryPtr;

Thedoodadsarray is only for doodads not contained in any ofséagionswvhich has its
owndoodadsThe key aliases contained in #ey_aliasesrray take precedence over any
defined in the keycodes componeiithe keyboard description.

typedef struct _XkbProperty {
char * name; [* property name */
char * value; [* property value */
} XkbPropertyRec,*XkbPropertyPtr;

typedef struct _XkbColor {

unsigned int pixel; * color */

char * spec; /* color name */
} XkbColorRec,*XkbColorPtr;

typedef struct _XkbKeyAliasRec {

char real[XkbKeyNameLength]; /* real name of the key */
char alias[XkbKeyNamelLength]; /* alias for the key */
} XkbKeyAliasRec,*XkbKeyAliasPtr;
typedef struct _XkbPoint { [* x,y coordinates */
short X;
short Y;

} XkbPointRec, *XkbPointPtr;
typedef struct _XkbOutline {

unsigned short num_points; /* number of points in the outline */
unsigned short sz_points; [* size of the points array */

unsigned short corner_radius; /* draw corners as circles with this radius */
XkbPaointPtr points; [* array of points defining the outline */

} XkbOutlineRec, *XkbOutlinePtr;

typedef struct _XkbBounds {
short x1,y1; /* upper left corner of the boundsMf/4 o */
short X2,y2; * lower right corner of the bounds,”?ﬂjfllo */
} XkbBoundsReg *XkbBoundsPtr;

typedef struct _XkbShape {
Atom name; [* shape’s name */
unsigned short num_outlines; /* number of outlines for the shape */
unsigned short sz_outlines; /* size of the outlines array */

XkbOutlinePtr outlines; /* array of outlines for the shape */

XkbOutlinePtr approx; /* pointer into the array to the approximating outline */
XkbOutlinePtr primary; [* pointer into the array to the primary outline */
XkbBoundsRec bounds; /* bounding box for the shape; encompasses all outlines */

} XkbShapeRe¢ *XkbShapePtr;

February 5, 1996 Library Version 1.0/Document Revision 1.0 100

The X Keyboard Extension 13 Keyboard Geometry

If approxand/orprimary is NULL, the default value is used. The default primary outline is
the first element in the outlines array, as is the default approximating outline.

typedef struct _XkbKey { [* key in a row */
XkbKeyNameRec name; [* key name */
short gap; I* gap iﬁ“mllo from previous key in row */
unsigned char shape_ndx; * index of shape for key */
unsigned char color_ndx; /* index of color for key body */
} XkbKeyRec, *XkbKeyPtr;
typedef struct _XkbRow { /* row in a section */
short top; [* top coordinate of row origin, relative to section’s origin */
short left; * left coordinate of row origin, relative to section’s origin */

unsigned short num_keys; /* number of keys in the keys array */
unsigned short sz_keys; /* size of the keys array */
int vertical; /* True =>vertical row,False =>horizontal row */
XkbKeyPtr keys; [* array of keys in the row*/
XkbBoundsRec bounds; /* bounding box for the row */

} XkbRowRec, *XkbRowPtr;

top andleft are in™"; .

typedef struct _XkbOverlayRec {

Atom name; * overlay name */

XkbSectionPtr section_under; /* the section under this overlay */
unsigned short num_rows; /* number of rows in the rows array */
unsigned short SZ_rows; [* size of the rows array */
XkbOverlayRowPtr rows; [* array of rows in the overlay */
XkbBoundsPtr bounds; /* bounding box for the overlay */

} XkbOverlayRec,*XkbOverlayPtr;
typedef struct _XkbOverlayRow {

unsigned short row_under; /*index into the row under this overlay row */
unsigned short num_keys; /* number of keys in the keys array */
unsigned short sz_keys; I* size of the keys array */
XkbOverlayKeyPtr keys; /* array of keys in the overlay row */

} XkbOverlayRowRec,*XkbOverlayRowPtr;

row_underis an index into the array afwsin the section under this overlay. The section
under this overlay row is the one pointed tosbgtion_undem this overlay row’s

XkbOverlayRec

typedef struct _XkbOverlayKey {
XkbKeyNameRec over; /* name of this overlay key */
XkbKeyNameRec under; /* name of the key under this overlay key */

} XkbOverlayKeyRec,*XkbOverlayKeyPtr;
typedef struct _XkbSection {

Atom name; [* section name */

unsigned char priority; [* drawing priority, 0=>highest, 255=>lowest */
short top; /* top coordinate of section origin */

short left; /* left coordinate of row origin */

unsigned short width; I* section width, ™", */

unsigned short height; I* section height)"1A%1*/

February 5, 1996 Library Version 1.0/Document Revision 1.0 101

The X Keyboard Extension 13 Keyboard Geometry

short angle; /* angle of section rotation, counterclockwise */
unsigned short num_rows; /* number of rows in the rows array */
unsigned short num_doodads; /* number of doodads in the doodads array */
unsigned short num_overlays; /* number of overlays in the overlays array */
unsigned short SZ_rows; I* size of the rows array */

unsigned short sz_doodads; /* size of the doodads array */

unsigned short sz_overlays; [* size of the overlays array */

XkbRowPtr rows; * section rows array */

XkbDoodadPtr doodads; /* section doodads array */

XkbBoundsRec bounds; /* bounding box for the section, before rotation*/
XkbOverlayPtr overlays; [* section overlays array */

} XkbSectionReg *XkbSectionPtr;

top andleft are the origin of the section, relative to the origin of the keyboafdip,
angleis in Y,y degrees.

DoodadRec Structures

The doodad arrays in thé&kbGeometryRec and thexkbSectionRec may contain any
of the doodad structures and types shown in Table 13.1 on page 96.

The doodad structures form a union:
typedef union _XkbDoodad {

XkbAnyDoodadRec any,;
XkbShapeDoodadRec shape;
XkbTextDoodadRec text;
XkbiIndicatorDoodadRec indicator;
XkbLogoDoodadRec logo;

} XkbDoodadReg *XkbDoodadPtr;

Thetop andleft coordinates of each doodad are the coordinates of the origin of the doodad
relative to the keyboard’s origin if the doodad is inXkbGeometryRec doodad array,

and with respect to the section’s origin if the doodad isXkl¥ectionRec doodad
array.Thecolor_ndxor on_color_ndxandoff_color_ndxields are color indices into the
XkbGeometryRec ’s color array, and are the colors to draw the doodads with. Similarly, the
shape_ndxields are indices into thékbGeometryRec ’s shape array.

typedef struct _XkbShapeDoodad {

Atom name; [* doodad name */

unsigned char type; XkbOutlineDoodad or XkbSolidDoodad */
unsigned char priority; /* drawing priority, 0=>highest, 255=>lowest */
short top; /* top coordinate, "Y1 */

short left; /* left coordinate, i/ */

short angle; * angle of rotation, clockwise,liﬁo degrees */
unsigned short color_ndx; [* doodad color */

unsigned short shape_ndx; /* doodad shape */

} XkbShapeDoodadRec*XkbShapeDoodadPtr;
typedef struct _XkbTextDoodad {

Atom name; /* doodad name */

unsigned char type; XkbTextDoodad */

unsigned char priority; /* drawing priority, 0=>highest, 255=>lowest */
short top; /* top coordinate, ™1 */

February 5, 1996 Library Version 1.0/Document Revision 1.0 102

The X Keyboard Extension 13 Keyboard Geometry

short left; /* left coordinate, i1 */

short angle; /* angle of rotation, cIockWise,lihio degrees */
short width; /% width in™"Y 0 */

short height; 1* height i/ 5 */

unsigned short color_ndx; [* doodad color */

char * text; /* doodad text */

char * font; * arbitrary font name for doodad text */

} XkbTextDoodadReg *XkbTextDoodadPtr;
typedef struct _XkbIndicatorDoodad {

Atom name; /* doodad name */

unsigned char type; /XkblndicatorDoodad */

unsigned char priority; /* drawing priority, 0=>highest, 255=>lowest */
short top; /* top coordinate, "Y1 */

short left: /* left coordinate, i/ */

short angle; * angle of rotation, clockwise,liqo degrees */
unsigned short shape_ndx; /* doodad shape */

unsigned short on_color_ndx; /* color for doodad if indicator is on */
unsigned short off_color_ndx; /* color for doodad if indicator is off */
} XkbIndicatorDoodadRec, *XkbIndicatorDoodadPtr;

typedef struct _XkbLogoDoodad {

Atom name; [* doodad name */

unsigned char type; /XkbLogoDoodad */

unsigned char priority; /* drawing priority, 0=>highest, 255=>lowest */
short top; /* top coordinate, "Y1 */

short left: /* left coordinate, i/ */

short angle; * angle of rotation, clockwise,liqo degrees */
unsigned short color_ndx; [* doodad color */

unsigned short shape_ndx; /* doodad shape */

char * logo_name; /* text for logo */

} XkbLogoDoodadRe¢ *XkbLogoDoodadPtr

13.8 Getting Keyboard Geometry From the Server

You can load a keyboard geometry as part of the keyboard description retuixidat by
GetKeyboardHowever, if a keyboard description has been previously loaded, you can
instead obtain the geometry by calling ¥XlidoGetGeometryn this case, the geometry
returned is the one associated with the keyboard whose device id is contained in the key-
board description.

To load a keyboard geometry if you already have the keyboard descriptiokkln@lt-

Geometry
StatusXxkbGetGeometry(dpy, xkb
Display * dpy; /* connection to the X server */
XkbDescPtr Xkl /* keyboard description that contains the id for the keyboard

and into which the geometry should be loaded */

XkbGetGeometrgan returrBadValue , Badimplementation , BadName BadAlloc or
BadLength errors, oiSuccess if it succeeds.

February 5, 1996 Library Version 1.0/Document Revision 1.0 103

The X Keyboard Extension 13 Keyboard Geometry

13.9

It is also possible to load a keyboard geometry by name. The X server maintains a data-
base of keyboard components (see Chapter 20). To load a keyboard geometry description
from this database by name, cédbGetNamedGeometry

StatusXxkbGetNamedGeometry(dpy, xkb nameg

Display * dpy; [* connection to the X server */
XkbDescPtr xkb; [* keyboard description into which the geometry should be loaded */
Atom name /* name of the geometry to be loaded */

XkbGetNamedGeometean returrBadNameif the namecannot be found.

Using Keyboard Geometry

Xkb provides a number of convenience functions to help use a keyboard geometry. These
include functions to return the bounding box of a shape’s top surface, and to update the
bounding box of a shape row or section.

A shape is made up of a number of outlines. Each outline is a polygon made up of a num-
ber of points. The bounding box of a shape is a rectangle that contains all the outlines of
that shape.

- mill el

actual key approximating primary detailed bounding
surface outline outline outline box

I outline array |
Figure 13.7 Key Surface, Shape Outlines and Bounding Box

To determine the bounding box of the top surface of a shapXktdllomputeShapeTop

Bool XkbComputeShapeTogshape bounds_rtri)
XkbShapePtr shape [* shape to be examined */
XkbBoundsPtr bounds_rtrn /* backfilled with the bounding box for the shape */

XkbComputeShapeTopturns @oundsRec that contains two x and y coordinates. These
coordinates describe the corners of a rectangle that contains the outline that describes the
top surface of the shape. The top surface is defined to be the approximating outline if the
approxfield of shapeis notNULL If approxis NULL, the top surface is defined to be the

last outline in theshapés array of outlinesXxkbComputeShapeTogturns~alse if shape

is NULL or if there are no outlines for the shape; otherwise it refirues.

A ShapeRec contains @oundsRec that describes the bounds of the shape. If you add or
delete an outline to or from a shape, the bounding box must be updated. To update the
bounding box of a shape, cXkbComputeShapeBounds

Bool XkbComputeShapeBoundg¢shapé
XkbShapePtr shape /* shape to be examined */

XkbComputeShapeBounaisdates th®oundsRec contained in thehapeby examining
all the outlines of the shape and settingBbandsRec to the minimum x and minimum

February 5, 1996 Library Version 1.0/Document Revision 1.0 104

The X Keyboard Extension 13 Keyboard Geometry

13.10

y, and maximum x and maximum y values found in those outMid=ComputeShape-
BoundsreturnsFalse if shapeis NULLor if there are no outlines for the shape; otherwise
it returnsTrue .

If you add or delete a key to or from a row, or if you update the shape of one of the keys
in that row, you may need to update the bounding box of that row. To update the bounding
box of a row, calXkbComputeRowBounds

Bool XkbComputeRowBoundggeom section row)

XkbGeometryPtrgeom /* geometry which contains theection*/
XkbSectionPtr section /* section which contains the row */
XkbRowPtr row; /* row to be examined and updated */

XkbComputeRowBoundsecks the bounds of all keys in t&, and updates the bound-
ing box of the row if necessaykbComputeRowBoundsturnsFalse if any of the argu-
ments iSNULL;, otherwise it return3rue .

If you add or delete a row to or from a section, or if you change the geometry of any of the
rows in that section, you may need to update the bounding box for that section. To update
the bounding box of a section, cakbComputeSectionBounds

Bool XkbComputeSectionBoundggeom section
XkbGeometryPtrgeom /* geometry which contains treection*/
XkbSectionPtr section [* section to be examined and updated */

XkbComputeSectionBounesamines all the rows of tlsectionand updates the bounding
box of that section so that it contains all roWkbComputeSectionBoundsurnsFalse
if any of the arguments NULL, otherwise it return3rue .

Keys that can generate multiple keycodes may be associated with multiple names. Such
keys have a primary name and an alternate name. To find the alternate name by using the
primary name for a key that is part of an overlay, XebFindOverlayForKey

char *XkbFindOverlayForKey (geom section unde)

XkbGeometryPtrgeom /* geometry which contains treection*/
XkbSectionPtr section /* section to be searched for matching keys */
char * under [* primary name of the key to be considered */

XkbFindOverlayForKeyses the primary name of the kapder, to look up the alternate
name, which it returns.

Adding Elements to a Keyboard Geometry

Xkb provides functions to add a single new element to the top-level keyboard geometry.
In each case theum_x fields of the corresponding structure is incremented by 1. These
functions do not changez_» unless there is no more room in the array. Some of these
functions fill in the values of the element’s structure from the arguments. For other func-
tions, you must explicitly write code to fill the structure’s elements.

The top-level geometry description includes a lisgg@dmetry propertiesA geometry

property associates an arbitrary string with an equally arbitrary name. Programs that dis-
play images of keyboards can use geometry properties as hints, but they are not inter-
preted by Xkb. No other geometry structures refer to geometry properties.

February 5, 1996 Library Version 1.0/Document Revision 1.0 105

The X Keyboard Extension 13 Keyboard Geometry

To add one property to an existing keyboard geometry descriptioXkisddGeomPro-

perty.

XkbPropertyPtiXkbAddGeomProperty (geom name value
XkbGeometryPtrgeom [* geometry to be updated */
char * name /* name of the new property */
char * value [* value for the new property */

XkbAddGeomPropertgdds one property with the specifieimeandvalueto the key-
board geometry specified lggom XkbAddGeomProperteturnsNULLif any of the
parameters is empty or if it was not able to allocate space for the property. To allocate
space for an arbitrary number of properties, calikkieAllocGeomProp&unction.

To add one key alias to an existing keyboard geometry descriptiokkb&lddGeomKey-

Alias.

XkbKeyAliasPtrXkbAddGeomKeyAlias(geom alias, rea)
XkbGeometryPtrgeom /* geometry to be updated */
char * alias; /* alias to be added */
char * real; /* real name to be bound to the new alias */

XkbAddGeomKeyAliaadds one key alias with the valaleas to the geometrgeom and
associates it with the key whose real nanreas XkbAddGeomKeyAliagturnsNULL if
any of the parameters is empty or if it was not able to allocate space for the alias. To allo-
cate space for an arbitrary number of aliases, caKkibéllocGeomKeyAliasdanction.

To add one color name to an existing keyboard geometry descriptioikbaddGeom-

Color.

XkbColorPtrXkbAddGeomColor(geom speg pixel)
XkbGeometryPtrgeom /* geometry to be updated */
char * spec /* color to be added */
unsigned int pixel /* color to be added */

XkbAddGeomColoadds the specified coloameandpixel to the specified geometry

geom The top-level geometry description includes a list of uddrColors (32)color
namesA colornameis a string whose interpretation is not specified by Xkb, neither is the
pixel value’s interpretation specified. All other geometry data structures refer to colors
using their indices in this global list or pointers to colors in thisXisbAddGeomColor
returnsNULLIf any of the parameters is empty or if it was not able to allocate space for the
color. To allocate space for an arbitrary number of colors to a geometry, cgkltA#oc-
GeomColordunction.

To add one outline to an existing shape, XahAddGeomOutline

XkbOutlinePtrXxkbAddGeomOutline(shape sz_points
XkbShapePtr shape /* shape to be updated */
int sz_points /* number of points to be reserved */

An outline consists of an arbitrary number of poiXisbAddGeomOutlinadds an outline

to the specifiedhapeby reservingz_pointgoints for it. The new outline is allocated and
zeroed XkbAddGeomOutlineeturnsNULL if any of the parameters is empty or if it was

not able to allocate space. To allocate space for an arbitrary number of outlines to a shape,
call XkbAllocGeomOutlines

February 5, 1996 Library Version 1.0/Document Revision 1.0 106

The X Keyboard Extension 13 Keyboard Geometry

To add a shape to a keyboard geometry XddilAddGeomShape
XkbShapePtXkbAddGeomShapd&geom name sz_outlines

XkbGeometryPtrgeom /* geometry to be updated */
Atom name /* name of the new shape */
int sz_outlines /* number of outlines to be reserved */

A geometry contains an arbitrary number of shapes, each of which is made up of an arbi-
trary number of outlineXxkbAddGeomShalds a shape to a geomeajgomby allocat-

ing space fosz_outlinesutlines for it, and giving it the name specifiediame If a

shape with nameamealready exists in the geometry, a pointer to the existing shape is
returned XkbAddGeomShapeturnsNULL if any of the parameters is empty or if it was

not able to allocate space. To allocate space for an arbitrary number of geometry shapes,
call XkbAllocGeomShapes

To add one key at the end of an existing row of keys X¢tdAddGeomKey

XkbKeyPtr XkbAddGeomKey(row)
XkbRowPtr row; /* row to be updated */

Keys are grouped into ron8kbAddGeomKegdds one key to the end of the specified

row. The key is allocated and zero&ttbAddGeomKeseturnsNULL if row is empty or if

it was not able to allocate space for the key. To allocate space for an arbitrary number of
keys to a row, calKkbAllocGeomKeys

To add one section to an existing keyboard geometryXkbhddGeomSection

XkbSectionPtiXxkbAddGeomSectiongeom hame sz_rowssz_doodadssz_overlays

XkbGeometryPtrgeom [* geometry to be updated */

Atom name /* name of the new section */

int SZ_rows /* number of rows to reserve in the section */

int sz_doodads /* number of doodads to reserve in the section */
int sz_overlays /* number of overlays to reserve in the section */

A keyboard geometry contains an arbitrary number of sectididddGeomSectiadds

one section to an existing keyboard geomgéym The new section contains space for

the number of rows, doodads, and overlays specifiet bgwssz_doodadsand
sz_overlaysThe new section is allocated and zeroed, and given the name specified by
name If a section with nameamealready exists in the geometry, a pointer to the existing
section is returneKkbAddGeomSectiorturnsNULLIf any of the parameters is empty or

if it was not able to allocate space for the section. To allocate space for an arbitrary num-
ber of sections to a geometry, 0dbAllocGeomSections

To add a row to a section, cXkbAddGeomRaow

XkbRowPtrXkbAddGeomRow(section sz_keys
XkbSectionPtr section [* section to be updated */
int sz_keys /* number of keys to be reserved */

One of the components of a keyboard geometry section is one or more rows of keys.
XkbAddGeomRowadds one row to the specifisdction The newly created row contains
space for the number of keys specifiedinkeysThey are allocated and zeroed, but oth-
erwise uninitializedXkbAddGeomRoweturnsNULL if any of the parameters is empty or

if it was not able to allocate space for the row. To allocate space for an arbitrary number of
rows to a section, call thékbAllocGeomRow&inction.

February 5, 1996 Library Version 1.0/Document Revision 1.0 107

The X Keyboard Extension 13 Keyboard Geometry

To add one doodad to a section of a keyboard geometry, or to the top-level geometry, call

XkbAddGeomDoodad

XkbDoodadPtiXkbAddGeomDoodadgeom section namé
XkbGeometryPtrgeom /* geometry to which the doodad is added */
XkbSectionPtr section [* section, if any, to which the doodad is added */
Atom name /* name of the new doodad */

A doodaddescribes some visible aspect of the keyboard that is not a key and is not a sec-
tion. XkbAddGeomDoodaadds a doodad with name specifiechiayneto the geometry

geomif sectionis NULL, or to the section of the geometry specifiegségtionif sectionis

not NULL XkbAddGeomDoodakturnsNULLif any of the parameters is empty or if it

was not able to allocate space for the doodad. If there is already a doodad with the name
namein the doodad array for the geometrys@ictionis NULL) or the section (ifectionis
non-NULL), a pointer to that doodad is returned. To allocate space for an arbitrary number
of doodads to a section, use XkbAllocGeomSectionDoodaftisction. To allocate

space for an arbitrary number of doodads to a keyboard geometry, Xsd&lowcGeom-
Doodadsfunction.

To add one overlay to a section, calbAddGeomOverlay

XkbOverlayPtrXkbAddGeomOverlay(section name sz_row}

XkbSectionPtr section /* section to which an overlay will be added */
Atom name /* name of the overlay */
int SZ_rows /* number of rows to reserve in the overlay */

XkbAddGeomOverlagdds an overlay with the specified name to the specéetion

The new overlay is created with space allocateddorowsows. If an overlay with name
namealready exists in the section, a pointer to the existing overlay is returned.
XkbAddGeomOverlaseturnsNULLif any of the parameters is empty or if it was not able

to allocate space for the overlay. To allocate space for an arbitrary number of overlays to a
section, call theXkbAllocGeomOverlajunction.

To add a row to an existing overlay, cdkbAddGeomOverlayRow

XkbOverlayRowPtiXkbAddGeomOverlayRow(overlay row_under, sz_keys
XkbOverlayPtr overlay, /* overlay to be updated */
XkbRowPtr row_under /* row to be overlayed in the sectionerlayoverlays */
int sz_keys /* number of keys to reserve in the row */

XkbAddGeomOverlayRoadds one row to thaverlay. The new row contains space for
sz_keykeys. Ifrow_underspecifies a row that doesn’t exist on the underlying section,
XkbAddGeomOverlayRometurnsNULLand doesn’t change the overladkbAddGeo-
mOverlayRoweturnsNULL if any of the parameters is empty or if it was not able to allo-
cate space for the overlay.

To add a key to an existing overlay row, ¢cétbAddGeomOverlayKey

XkbOverlayKeyPtiXkbAddGeomOverlayKey(overlay row, undey
XkbOverlayPtr overlay, /* overlay to be updated */
XkbRowPtr row; /* row in overlay to be updated */
char * under /* primary name of the key to be considered */

XkbAddGeomOverlayKeadds one key to threw in theoverlay. If there is no key named
underin the row of the underlying sectioikbAddGeomOverlayKegturnsNULL

February 5, 1996 Library Version 1.0/Document Revision 1.0 108

The X Keyboard Extension 13 Keyboard Geometry

13.11 Allocating and Freeing Geometry Components

Xkb provides a number of functions to allocate and free subcomponents of a keyboard
geometry. Use these functions to create or modify keyboard geometries. Note that these
functions merely allocate space for the new element(s), and it is up to you to fill in the val-
ues explicitly in your code. These allocation functions increasebut never touch

num x (unless there is an allocation failure, in which case they resesbetandnum «

to zero). These functions retuuccess if they succeedBadAlloc if they are not able

to allocate space, @adValue if a parameter is not as expected.

To allocate space for an arbitrary number of outlines to a shapgkb&llocGeomOut-

lines

StatusXkbAllocGeomOutlines(shape num_needed
XkbShapePtr shape * shape for which outlines should be allocated */
int num_needed™* number of new outlines required */

XkbAllocGeomOutlineallocates space foum_neededutlines in the specifieshape
The outlines are not initialized.

To free geometry outlines, cadkbFreeGeomOutlines

void XkbFreeGeomOutlinegshapefirst, count free_al)

XkbShapePtr shape /* shape in which outlines should be freed */
int first; [* first outline to be freed */

int count /* number of outlines to be freed */

Bool free_all /* True => all outlines are freed */

If free_allis True , all outlines are freed regardless of the valuigrsifor count Other-
wise,countoutlines are freed beginning with the one specifietirby,

To allocate space for an arbitrary number of keys to a row)XkbllocGeomKeys

StatusXkbAllocGeomKeys(row, num_needéed
XkbRowPtr row; /* row to which keys should be allocated */
int num_needed* number of new keys required */

XkbAllocGeomKeyallocatesium_neede#leys and adds them to thewv. No initializa-
tion of the keys is done.

To free geometry keys, calkbFreeGeomKeys

void XkbFreeGeomKeygrow, first, count free_al)

XkbRowPtr row, /* row in which keys should be freed */
int first; [* first key to be freed */

int count /* number of keys to be freed */

Bool free_all /* True => all keys are freed */

If free_allis True , all keys are freed regardless of the valugrsf or count Otherwise,
countkeys are freed beginning with the one specifiedirsy.

To allocate geometry properties, cékbAllocGeomProps

StatusXkbAllocGeomProps(geom num_needed
XkbGeometryPtrgeom /* geometry for which properties should be allocated */
int num_needed* number of new properties required */

February 5, 1996 Library Version 1.0/Document Revision 1.0 109

The X Keyboard Extension 13 Keyboard Geometry

XkbAllocGeomPropallocates space foum_needegroperties and adds them to the
specified geometrgeom No initialization of the properties is done. A geometry property
associates an arbitrary string with an equally arbitrary name. Geometry properties can be
used to provide hints to programs that display images of keyboards, but they are not inter-
preted by Xkb. No other geometry structures refer to geometry properties.

To free geometry properties, cXlkbFreeGeomProperties

void XkbFreeGeomPropertieggeom first, count free_al)

XkbGeometryPtrgeom /* geometry in which properties should be freed */
int first; [* first property to be freed */

int count /* number of properties to be freed */

Bool free_all /* True => all properties are freed */

If free_allis True , all properties are freed regardless of the valdestfor count Other-
wise,countproperties are freed beginning with the one specifieiir &ty

To allocate geometry key aliases, cétbAllocGeomKeyAliases

StatusXkbAllocGeomKeyAliaseggeom num_needed
XkbGeometryPtrgeom /* geometry for which key aliases should be allocated */
int num_needed* number of new key aliases required */

XkbAllocGeomKeyAliasedlocates space foum_neede#ley aliases and adds them to
the specified geometigeom A key alias is a pair of strings that associates an alternate
name for a key with the real name for that key.

To free geometry key aliases, cdkbFreeGeomKeyAliases

void XkbFreeGeomKeyAliaseggeom first, count free_al)

XkbGeometryPtrgeom /* geometry in which key aliases should be freed */
int first; [* first key alias to be freed */

int count /* number of key aliases to be freed */

Bool free_all /* True => all key aliases are freed */

If free_allis True , all aliases in the top level of the specified geomgégmare freed
regardless of the value fifst or count Otherwisecountaliases irgeomare freed begin-
ning with the one specified Hyst.

To allocate geometry colors, cxlkbAllocGeomColors

StatusXkbAllocGeomColors(geom hum_needed
XkbGeometryPtrgeom /* geometry for which colors should be allocated */
int num_needed* number of new colors required. */

XkbAllocGeomColorallocates space faorum_neededolors and adds them to the speci-
fied geometrygeom A color name is a string whose interpretation is not specified by Xkb.
All other geometry data structures refer to colors using their indices in this global list or
pointers to colors in this list.

February 5, 1996 Library Version 1.0/Document Revision 1.0 110

The X Keyboard Extension 13 Keyboard Geometry

To free geometry colors, calkbFreeGeomColors

void XkbFreeGeomColorgdgeom first, count free_al)

XkbGeometryPtrgeom /* geometry in which colors should be freed */
int first; [* first color to be freed */

int count /* number of colors to be freed */

Bool free_all /* True => all colors are freed */

If free_allis True , all colors are freed regardless of the valuérsf or count Otherwise,
countcolors are freed beginning with the one specifiefirisy.

To allocate points in an outline, cxlkbAllocGeomPoints

StatusXkbAllocGeomPoints(outling num_needéd
XkbOutlinePtr outline /* outline for which points should be allocated */
int num_needed* number of new points required */

XkbAllocGeomPointallocates space foium_needegoints in the specifiedutline The
points are not initialized.

To free points in a outline, callkbFreeGeomPoints

void XkbFreeGeomPointgoutling, first, count free_al)

XkbOutlinePtr outline /* outline in which points should be freed */
int first; [* first point to be freed. */

int count /* number of points to be freed */

Bool free_all /* True => all points are freed */

If free_allis True , all points are freed regardless of the valuBrsf andcount Other-
wise, the number of points specifieddnuntare freed, beginning with the point specified
by first in the specified outline.

To allocate space for an arbitrary number of geometry shapeXkb@llocGeomShapes

StatusXkbAllocGeomShapeggeom num_needed
XkbGeometryPtrgeom /* geometry for which shapes should be allocated */
int num_needed* number of new shapes required */

XkbAllocGeomShapesdlocates space foum_neededhapes in the specified geometry
geom The shapes are not initialized.

To free geometry shapes, cdkbFreeGeomShapes

void XkbFreeGeomShapefgeom first, count f ree_al)

XkbGeometryPtrgeom /* geometry in which shapes should be freed */
int first; [* first shape to be freed */

int count /* number of shapes to be freed */

Bool free_all /* True => all shapes are freed */

If free_allis True , all shapes in the geometry are freed regardless of the valirss afid
count Otherwisecountshapes are freed, beginning with the shape specifiicsby

To allocate geometry sections, cdkbAllocGeomSections

StatusXkbAllocGeomSectionggeom num_needéd
XkbGeometryPtrgeom /*geometry for which sections should be allocated */
int num_needed* number of new sections required */

February 5, 1996 Library Version 1.0/Document Revision 1.0 111

The X Keyboard Extension 13 Keyboard Geometry

XkbAllocGeomSectioralocatesnum_neededections and adds them to the geometry
geom No initialization of the sections is done.

To free geometry sections, calkbFreeGeomSections

void XkbFreeGeomSectionggeom first, count free_al)

XkbGeometryPtrgeom /* geometry in which sections should be freed */
int first; [* first section to be freed. */

int count I* number of sections to be freed */

Bool free_all /* True => all sections are freed */

If free_allis True , all sections are freed regardless of the valdestfandcount Other-
wise, the number of sections specifiedcbhyntare freed, beginning with the section spec-
ified by first in the specified geometry.

To allocate rows in a section, cXlkbAllocGeomRows

StatusXkbAllocGeomRowgsection num_needed
XkbSectionPtr section /* section for which rows should be allocated */
int num_needed* number of new rows required */

XkbAllocGeomRowallocatesnum_neededows and adds them to teection No initial-
ization of the rows is done.

To free rows in a section, calkbFreeGeomRows

void XkbFreeGeomRowgsection first, count free_al)

XkbSectionPtr section /* section in which rows should be freed */
int first; /* first row to be freed. */

int count /* number of rows to be freed */

Bool free_all /* True => all rows are freed */

If free_allis True , all rows are freed regardless of the valugiref andcount Otherwise,
the number of rows specified lbpuntare freed, beginning with the row specifiedfiogt
in the specified section.

To allocate overlays in a section, cékbAllocGeomOverlays

StatusXkbAllocGeomOverlays(section num_needéd
XkbSectionPtr section /* section for which overlays should be allocated */
int num_needed* number of new overlays required */

XkbAllocGeomRowallocatesnum_neededverlays and adds them to section No ini-
tialization of the overlays is done.

To free rows in an section, cdkbFreeGeomOverlays

void XkbFreeGeomOverlaygsection first, count free_al)

XkbSectionPtr section [* section in which overlays should be freed */
int first; [* first overlay to be freed. */

int count /* number of overlays to be freed */

Bool free_all /* True => all overlays are freed */

If free_allis True , all overlays are freed regardless of the valugstfandcount Other-
wise, the number of overlays specifieddountare freed, beginning with the overlay
specified byfirst in the specified section.

February 5, 1996 Library Version 1.0/Document Revision 1.0 112

The X Keyboard Extension 13 Keyboard Geometry

To allocate rows in a overlay, cakbAllocGeomOverlayRows

StatusXkbAllocGeomOverlayRowgoverlay num_needed
XkbSectionPtr overlay, * section for which rows should be allocated */
int num_needed™* number of new rows required */

XkbAllocGeomOverlayRovedlocatesium_needetbws and adds them to tbheerlay No
initialization of the rows is done.

To free rows in an overlay, calkbFreeGeomOverlayRows

void XkbFreeGeomOverlayRowgoverlay first, count free_al)

XkbSectionPtr overlay, [* section in which rows should be freed */
int first; [* first row to be freed. */

int count /* number of rows to be freed */

Bool free_all /* True => all rows are freed */

If free_allis True , all rows are freed regardless of the valugiref andcount Otherwise,
the number of rows specified lbbpuntare freed, beginning with the row specifiedfiogt
in the specified overlay.

To allocate keys in an overlay row, cAkbAllocGeomOverlayKeys

StatusXkbAllocGeomOverlayKeys(row, num_needed
XkbRowPtr row, [* section for which rows should be allocated */
int num_needed* number of new rows required */

XkbAllocGeomOverlayKeydlocatesium_neede#leys and adds them to thav. No ini-
tialization of the keys is done.

To free keys in an overlay row, cdkbFreeGeomOverlayKeys

void XkbFreeGeomOverlayKeygrow, first, count free_al)

XkbRowPtr row; /* row in which keys should be freed */
int first; [* first key to be freed. */

int count /* number of keys to be freed */

Bool free_all /* True => all keys are freed */

If free_allis True , all keys are freed regardless of the valursif andcount Otherwise,
the number of keys specified bguntare freed, beginning with the key specifiedfibst
in the specified row.

To allocate doodads that are global to a keyboard geometritktsllocGeomDoodads

StatusXkbAllocGeomDoodadggeom num_needéed
XkbGeometryPtrgeom /* geometry for which doodads should be allocated */
int num_needed* number of new doodads required */

XkbAllocGeomDoodadsllocatesnum_neededoodads and adds them to the specified
geometrygeom No initialization of the doodads is done.

To allocate doodads that are specific to a sectionXkbihllocGeomSectionDoodads

StatusXkbAllocGeomSectionDoodadésection num_needed
XkbSectionPtr section * section for which doodads should be allocated */
int num_needed* number of new doodads required */

February 5, 1996 Library Version 1.0/Document Revision 1.0 113

The X Keyboard Extension 13 Keyboard Geometry

XkbAllocGeomSectionDoodadBocatesium_neededoodads and adds them to the spec-
ified section No initialization of the doodads is done.

To free geometry doodads, cAkbFreeGeomDoodads

void XkbFreeGeomDoodadgdoodads count free_al)
XkbDoodadPtr doodads /* doodads to be freed */
int count /* number of doodads to be freed */
Bool free_all /* True => all doodads are freed */

If free_allis True , all doodads in the array are freed, regardless of the vatoint
Otherwise countdoodads are freed.

To allocate an entire geometry, cdkbAllocGeometry

StatusXkbAllocGeometry(xkb, size$
XkbDescPtr xkhy /* keyboard description for which geometry is to be allocated */
XkbGeometrySizesPtrsizes /* initial sizes for all geometry components */

XkbAllocGeometrallocates a keyboard geometry and adds it to the keyboard description
specified bykkb.The keyboard description should be obtained vixX#iEGetKeyboarar
XkbAllockeyboardunctions. Thesizesparameter specifies the number of elements to be
reserved for the subcomponents of the keyboard geometry and can be zero or more. These
subcomponents include tpeoperties, colors, shapes, sections, and doodads

To free an entire geometry, cXlkbFreeGeometry

void XkbFreeGeometry(geom which free_al)

XkbGeometryPtrgeom /* geometry to be freed */
unsigned int which /* mask of geometry components to be freed */
Bool free_all [* True =>the entire geometry is freed. */

The values oWhichandfree_alldetermine how much of the specified geometry is freed.
The valid values fowhichare:

#define XkbGeomPropertiesMask (1<<0)
#define XkbGeomColorsMask (1<<1)
#define XkbGeomShapesMask (1<<2)
#define XkbGeomSectionsMask (1<<3)
#define XkbGeomDoodadsMask (1<<4)
#define XkbGeomAllMask (0Ox1f)

If free_allis True , the entire geometry is freed regardless of the valwdmh Other-
wise, the portions of the geometry specifiedahychare freed.

February 5, 1996 Library Version 1.0/Document Revision 1.0 114

The X Keyboard Extension 14 Xkb Keyboard Mapping

14 Xkb Keyboard Mapping

The Xkb keyboard mapping contains all the information the server and clients need to
interpret key events. This chapter provides an overview of the terminology used to
describe an Xkb keyboard mapping, and introduces common utilities for manipulating the
keyboard mapping.

The mapping consists of two components, a server map and a client mapeftmaap

is the collection of information a client needs to interpret key events from the keyboard. It
contains a global list of key types and an array of key symbol maps, each of which
describes the symbols bound to a key and the rules to be used to interpret those symbols.
Theservermap contains the information the server needs to interpret key events. This
includes actions and behaviors for each key, explicit components for a key and the virtual
modifiers and the per-key virtual modifier mapping.

For detailed information on particular components of the keyboard map, refer to Chapter
15, “Xkb Client Keyboard Mapping” and Chapter 16, “Xkb Server Keyboard Mapping.”

14.1 Notation and Terminology

The graphic characters or control functions that may be accessed by one key are logically
arranged in groups and levels, whgreup andlevelare defined as in the ISO9995 stan-

dard:

Group: A logical state of a keyboard providing access to a collection of graphic char-
acters. Usually these graphic characters logically belong together and may be
arranged on several levels within a group.

Level: One of several states (normally 2 or 3) governing which graphic character is

produced when a graphic key is actuated. In certain cases the level may also
affect function keys.

The above definitions, taken from the ISO standard, refer to graphic keys and characters.
In the context of Xkb, Group and Level are not constrained to graphic keys and characters;
they may be used with any key to access any character the key is capable of generating.

Level is often referred to as “Shift Level”. Levels are numbered sequentially starting at
one.

Note Shift level is derived from the modifier state, but not necessarily in the same way for
all keys. For example, tHshift modifier selects shift level 2 on most keys, but for
keypad keys the modifier boundNaim_Lock (that is, theNumLock virtual modi-
fier) also selects shift level 2.

February 5, 1996 Library Version 1.0/Document Revision 1.0 115

The X Keyboard Extension 14 Xkb Keyboard Mapping

For example, consider the following key (the gray characters indicate symbols that are
implied or expected but are not actually engraved on the key):

A
g Gl'-l:z L1 L2 L1 L2 L1 L2
G1lL2 =

| a e Gl al|A

= G2Ll=e a|A|=|E

s GoL2 = [E Gl G2 Glee |

Group -
Physical Key Symbols Core Symbols Xkb Symbols

Figure 14.1 Shift Levels and Groups

This key has two groups, indicated by the columns, and each group has two shift levels.
For the first group (Groupl), the symbol shift level ore iand the symbol for shift level

two isA. For the second group, the symbol for shift level ore,iand the symbol for

shift level two is/.

14.1.1 Core Implementation

The standard interpretation rules for the core X keymap only allow clients to access keys
such as the one shown in Figure 14.1. That is, clients using the standard interpretation
rules can only access one of four keysyms for any dfegRress event — two different
symbols in two different groups.

In general, thé&hift modifier, theLock modifier, and the modifier bound to the
Num_Lock key are used to change between shift level 1 and shift level 2. To switch
between groups, the core implementation uses the modifier boundvlodbeswitch

key. When théMode_switch maodifier is set, the keyboard is logically in Group 2. When
theMode_switch modifier is not set, the keyboard is logically in Group 1.

The core implementation does not clearly specify the behavior of keys. For example, the
locking behavior of th€apsLock andNum_Lock keys depends upon the vendor.

14.1.2 Xkb Implementation

Xkb extends the core implementation by providing access to up to four keyboard groups
with up to 63 shift levels per kéyin addition, Xkb provides precise specifications regard-
ing the behavior of keys. In Xkb, modifier state and the current group are independent
(with the exception of compatibility mapping, discussed in Chapter 17.)

Xkb handles switching between groups via key actions, independent of any modifier state
information. Key actions are in the server map component and are described in detail in
section Note on page 145.

Xkb handles shift levels by associating a key type with each group on each key. Each key
type defines the shift levels available for the groups on keys of its type, and specifies the
modifier combinations necessary to access each level.

1. The core implementation restricts the number of symbols per key to 255. With four groups, this allows for up to 63
symbols (or shift levels) per group. Most keys will only have a few shift levels.

February 5, 1996 Library Version 1.0/Document Revision 1.0 116

The X Keyboard Extension 14 Xkb Keyboard Mapping

14.2

For example, Xkb allows key types where @antrol modifier can be used to access the
shift level two of a key. Key types are in the client map component and are described in
detail in section 15.2 on page 127.

Xkb provides precise specification of the behavior of a key using key behaviors. Key
behaviors are in the server map component and are described in detail in section 16.2 on
page 161.

Getting Map Components from the Server

Xkb provides two routines to obtain the keyboard mapping components from the server.
The first routine XkbGetMap allocates aixkbDescRec structure, retrieves mapping
components from the server, and stores them iXkhBescRec structure it just allo-

cated. The second routingkbGetUpdatedMapetrieves mapping components from the
server and stores them in aXkbDescRec structure that has previously been allocated.

To allocate arXkbDescRec structure and populate it with the server’s keyboard client
map and server map, cXkbGetMap. XkbGetMap similar toXkbGetKeyboardsee sec-
tion 6.2), but is used only for obtaining the address ofikdibescRec structure that is
populated with keyboard mapping components. It allows finer control over which
sub-structures of the keyboard mapping components are to be popdkit€atKey-
board always returns fully-populated components, wkikdlbGetMapcan be instructed to
return a partially-populated component.

XkbDescPtriXkbGetMap (display, which, device_spec

Display * display; [* connection to X server */
unsigned int which /* mask selecting sub-components to populate */
unsigned int device_spec /* device_id, orXkbUseCoreKbd */

Thewhichmask is a bitwise inclusive OR of the masks defined in Table 14.1 on page 119.
Only those portions of the keyboard server map and the keyboard client maps that are
specified inwhichare allocated and populated.

In addition to allocating and obtaining the server map and the clienidkl@etMapalso
sets thalevice_spedhemin_key codeandmax_key_ codéelds of the keyboard
description.

XkbGetMaps synchronous; it queries the server for the desired information, waits for a
reply, and then returns. If successikbGetMagreturns a pointer to thékbDescRec
structure it allocated. If unsuccessiXikbGetMapreturnsNULL When unsuccessful, one

of the following protocol errors is also generatBadAlloc (unable to allocate the
XkbDescRec structure)BadValue (some mask bits iwhichare undefined) or Badim-
plementation (a compatible version of the Xkb extension is not available in the server).
To free the returned data, uskbFreeClientMap

February 5, 1996 Library Version 1.0/Document Revision 1.0 117

The X Keyboard Extension 14 Xkb Keyboard Mapping

Xkb also provides convenience routines to get partial component definitions from the
server. These functions are specified in the “convenience functions” column in Table 14.1.
Refer to the sections listed in the table for more information on these routines.

Table 14.1 Xkb Mapping Component Masks and Convenience Functions

Mask Value Map Fields Convenience Functions Section

XkbKeyTypesMask (1<<0) client types XkbGetKeyTypes 15.2
size_types XkbResizeKeyType
num_types XkbCopyKeyType
XkbCopyKeyTypes

XkbKeySymsMask (1<<1) client syms XkbGetKeySyms 15.3
size_syms XkbResizeKeySyms
num_syms XkbChangeTypesOfKey
key sym_map

XkbModifierMapMask (1<<2) client modmap XkbGetKeyModifierMap 154
XkbEXxplicitComponentsMask (1<<3) server explicit XkbGetKeyExplicitComponents 16.3
XkbKeyActionsMask (1<<4) server key acts XkbGetKeyActions 16.1

acts XkbResizeKeyActions

num_acts

size_acts
XkbKeyBehaviorsMask (1<<5) server behaviors XkbGetKeyBehaviors 16.2
XkbVirtualModsMask (1<<6) server vmods XkbGetVirtualMods 16.4
XkbVirtualModMapMask (1<<7) server vmodmap XkbGetVirtualModMap 16.4

Xkb defines combinations of these masks for convenience:

#define XkbResizablelnfoMask (XkbKeyTypesMask)

#define XkbAllClientinfoMask (XkbKeyTypesMask | XkbKeySymsMask |
XkbModifierMapMask)

#define XkbAllServerinfoMask (XkbExplicitComponentsMask |

XkbKeyActionsMask| XkbKeyBehaviorsMask |
XkbVirtualModsMask | XkbVirtualModMapMask)
#define XkbAllIMapComponentsMask (XkbAllClientinfoMask|XkbAllServerinfoMask)

Key types, symbol maps, and actions are all interrelated: changing one requires changes in
the others. The convenience functions make it easier to edit these components and handle
the interdependencies.

To update the client or server map information in an existing keyboard description, use

XkbGetUpdatedMap

StatusXkbGetUpdatedMap(display, which, xkp
Display * display, [* connection to X server */
unsigned int which /* mask selecting sub-components to populate */
XkbDescPtr xkby /* keyboard description to be updated */

Thewhich parameter is a bitwise inclusive OR of the masks in Table 14.1. If the needed
components of thekb structure are not already allocat¥#thbGetUpdatedMapllocates
them.XkbGetUpdatedMafetches the requested information for the device specified in
the XkbDescRec passed in thekb parameter.

February 5, 1996 Library Version 1.0/Document Revision 1.0 118

The X Keyboard Extension 14 Xkb Keyboard Mapping

14.3

XkbGetUpdatedMaps synchronous; it queries the server for the desired information,
waits for a reply, and then returns. If successfubGetUpdatedMapeturnsSuccess . If
unsuccessfulXkbGetUpdatedMapeturns one of the followindg@adAlloc (unable to
allocate a component in thé&bDescRec structure)BadValue (some mask bits iwhich
are undefined)Badimplementation (a compatible version of the Xkb extension is not
available in the server or the reply from the server was invalid).

Changing Map Components in the Server

There are two ways to make changes to map components: either change a local copy of the
keyboard map and caflkbSetMapo send the modified map to the server, or, to reduce
network traffic, use aXkbMapChangesRec structure and cakkbChangeMap

Bool XkbSetMap(dpy, which xkb

Display * dpy; [* connection to X server */
unsigned int which /* mask selecting sub-components to update */
XkbDescPtr xkby /* keyboard description from which new values taken */

UseXkbSetMapo send a complete new set of values for entire components (for example,
all symbols, all actions, etc.) to the server. Wiéch parameter specifies the components

to be sent to the server, and is a bitwise inclusive OR of the masks listed in Table 14.1.
Thexkbparameter is a pointer to XkbDescRec structure, and contains the information

to be copied to the server. For each bit set imthieh parameterXkbSetMapakes the
corresponding structure values from k& parameter and sends it to the server specified

by dpy.

If any components specified lyhichare not present in thékb parameterXkbSetMap
returnsFalse . Otherwise, it sends the update request to the server and fetiens<kb-
SetMapcan generatBadAlloc , BadLength , andBadValue protocol errors.

Key types, symbol maps, and actions are all interrelated; changing one requires changes in
the others. Xkb provides functions to make it easier to edit these components and handle
the interdependencies. Table 14.1 lists these helper functions and provides a pointer to
where they are defined

14.3.1 The XkbMapChangesRec Structure

Use thexkbMapChangesRec structure to identify and track partial modifications to the
mapping components, and to reduce the amount of traffic between the server and clients.

typedef struct _XkbMapChanges {

unsigned short changed; /* identifies valid components in structure */
KeyCode min_key code; /* lowest numbered keycode for device */
KeyCode max_key code; /* highest numbered keycode for device */
unsigned char first_type; * index of first kype modified */

unsigned char num_types; [* # types modified */

KeyCode first_key sym; [* first key whokey sym_ maphanged */
unsigned char num_key syms; /&y _sym_mapntries changed */
KeyCode first key act; [* first key whokey_actentry changed */
unsigned char num_key_acts; /k&y_actsntries changed */

KeyCode first_key_behavior; [* first key whosehaviorschanged */
unsigned char num_key_behaviors; /bé&haviorsentries changed */

KeyCode first_key_explicit; [* first key whosxplicitentry changed */

February 5, 1996 Library Version 1.0/Document Revision 1.0 119

The X Keyboard Extension 14 Xkb Keyboard Mapping

unsigned char num_key_explicit; [*&kplicit entries changed */

KeyCode first_modmap_key; [* first key whas®dmapentry changed */
unsigned char num_modmap_keys; /frddmapentries changed */

KeyCode first_vmodmap_key; /*first key whog@odmapchanged */
unsigned char num_vmodmap_keys; Rrtodmapentries changed */
unsigned char padil,; /* reserved */

unsigned short vmods; /* mask indicating whishodschanged */

} XkbMapChangesReg¢*XkbMapChangesPtr;

Thechangedield identifies the map components that have changed XklaDescRec

structure, and may contain any of the bits in Table 14.1 on page 119, which are also shown
in Table 14.2. Every 1 bit iohangedalso identifies which other fields in the
XkbMapChangesRec structure contain valid values, as indicated in Table 14.2. The
min_key _codandmax_key_ codéelds are for reference only; they are ignored on any
requests sent to the server, and are always updated by the server whenever it returns the
data for arlXkbMapChangesRec.

Table 14.2 XkbMapChangesRec Masks

Valid : .

Mask XkbMapChangesReékaeSCRec Field Containing
. hanged Data

Fields
XkbKeyTypesMask first_type, map->typelfirst_type] ..

num_types map->typelfirst_type + num_types - 1]
XkbKeySymsMask first_key sym, map->key_sym_maplfirst_key sym] ..

num_key syms map->key_sym_maplfirst_key sym +

num_key syms - 1]

XkbModifierMapMask first._ modmap_key, map->modmap[first modmap_key] ..

num_modmap_keys map->modmap|first_ modmap_key +
num_modmap_keys-1]
XkbExplicitComponentsMask first_key explicit, server->explicit[first_key explicit] ..
num_key_explicit server->explicit[first_key explicit +
num_key_explicit - 1]

XkbKeyActionsMask first_key act, server->key_acts|first_key act] ..
num_key acts server->key_acts|first_key act +
num_key acts - 1]
XkbKeyBehaviorsMask first_key behavior, server->behaviors[first_key behavior] ..

num_key behaviors server->behaviors|first key behavior +
num_key behaviors - 1]

XkbVirtualModsMask vmods server->vmods[*]

XkbVirtualModMapMask first_vmodmap_key, server->vmodmaplfirst_vmodmap_key]
num_vmodmap_keys ..
server->vmodmaplfirst_vmodmap_key
+ num_vmodmap_keys - 1]

To update only partial components of a keyboard description, modify the appropriate
fields in the server and map components of a local copy of the keyboard description, then

February 5, 1996 Library Version 1.0/Document Revision 1.0 120

The X Keyboard Extension 14 Xkb Keyboard Mapping

14.4

call XkbChangeMaypvith anXkbMapChangesRec structure indicating which compo-
nents have changed.

Bool XkbChangeMap(dpy, xkh changey
Display * dpy, [* connection to X server */
XkbDescPtr xkby [* keyboard description from which new values taken */
XkbMapChangesPtr changes /*identifies component parts to update */

XkbChangeMagopies any components specified bythangesstructure from the key-
board descriptiorxkh, to the X server specified lmpy.

If any components specified lohhangesare not present in thékb parameter,
XkbChangeMapeturnsFalse . Otherwise, it sends a request to the server and returns
True .

XkbChangeMajan generatBadAlloc , BadLength , andBadValue protocol errors.

Tracking Changes to Map Components

The Xkb extension repordékbMapNotify — events to clients wanting notification when-

ever a map component of the Xkb description for a device changes. There are many differ-
ent types of Xkb keyboard map changes. Xkb uses an event detail mask to identify each
type of change. The event detail masks are identical to the masks listed in Table 14.1 on
page 119.

To receivexkbMapNotify — events under all possible conditions, édbSelectEvents
(see section 4.3) and padsMapNotifyMask in bothbits_to changeand
values_for_bits

To receivexkbMapNotify events only under certain conditions, ¢étbSelectEventDe-
tails usingXkbMapNotify — as theevent_typend specifying the desired map changes in
bits_to_changandvalues_for_bitsising mask bits from Table 14.1.

The structure foKkbMapNotify —events is:

typedef struct {
int type; /* Xkb extension base event code */
unsigned long serial; /* X server serial number for event */
Bool send_event; Arue => synthetically generated */
Display * display; [* server connection where event generated */
Time time; /* server time when event generated */
int xkb_type; [*XkbMapNotify ~ */
int device; I* Xkb device id, will not b&XkbUseCoreKbd */
unsigned int changed; * identifies valid fields in rest of event */
unsigned int resized; /* reserved */
int first_type; [* index of first keyypemodified */
int num_types [* # types modified */
KeyCode min_key_code; /* minimum keycode for device */
KeyCode max_key_code; /* maximum keycode for device */
KeyCode first_key sym; /* first key whokey sym_maphanged */
KeyCode first key act; [* first key whokey actsentry changed */
KeyCode first_key_behavior; /* first key whasehaviorschanged */
KeyCode first_key explicit; /* first key whosxplicitentry changed */
KeyCode first._ modmap_key; /*first key whas®dmapentry changed */

February 5, 1996 Library Version 1.0/Document Revision 1.0 121

The X Keyboard Extension 14 Xkb Keyboard Mapping

KeyCode first_ vmodmap_key; /*modmapentries changed */

int num_key syms; [* #ey_sym_magpntries changed */

int num_key_acts; /* #ey actentries changed */

int num_key_behaviors; /* Behaviorsentries changed */

int num_key_explicit; /* #explicitentries changed */

int num_modmap_keys; /* hodmapentries changed */

int num_vmodmap_keys;/* ¥#modmapentries changed */
unsigned int vmods; /* mask indicating whiemodschanged */

} XkbMapNotifyEvent ;

Thechangedield specifies the map components that have changed and is the bitwise
inclusive OR of the mask bits defined in Table 14.1 on page 119. The other fields in this
event are interpreted as the like-named fields iKkoMapChangesRec (see section

14.3.1). ThexkbMapNotifyEvent structure also has an additionasizedfield that is
reserved for future use.

14.5 Allocating and Freeing Client and Server Maps

Calling XkbGetMap(see section 14.2) should be sufficient for most applications to get cli-
ent and server maps. As a result, most applications do not need to directly allocate client
and server maps.

If you change the number of key types or construct map components without loading the
necessary components from the X server, do not allocate any map components directly
usingmallocor Xmalloc Instead, use the Xkb allocatoxkbAllocClientMapandXkbAl-
locServerMap

Similarly, use the Xkb destructoeskbFreeClientMamndXkbFreeServerMamstead of
freeor Xfree

14.5.1 Allocating an Empty Client Map
To allocate and initialize an empty client map description recordXkbAllocClientMap.
StatusXkbAllocClientMap (xkb, which, type_count

XkbDescPtr xkby * keyboard description in which to allocate client map */
unsigned int which /* mask selecting map components to allocate */
unsigned int type_count /* value ofnum_typedield in map to be allocated */

XkbAllocClientMapallocates and initializes an empty client map inrttagfield of the

keyboard description specified kigh Thewhich parameter specifies the particular com-
ponents of the client map structure to allocate, and is a mask composed by a bitwise inclu-
sive OR of one or more of the masks shown in Table 14.3.

Table 14.3 XkbAllocClientMap Masks

Mask Effect

XkbKeyTypesMask Thetype_counfield specifies the number of entries to pre-
allocate for thaypesfield of the client map. If the
type_countield is less tharXkbNumRequiredTypes (see
section 15.2.1), returrBadValue .

February 5, 1996 Library Version 1.0/Document Revision 1.0 122

The X Keyboard Extension 14 Xkb Keyboard Mapping

Table 14.3 XkbAllocClientMap Masks

Mask Effect

XkbKeySymsMask Thenin_key codandmax_key cod@elds of thexkb
Parameter are used to allocate sgmmsandkey _sym_map
lelds of the client map. The fields are allocated to contain
the maximum number of entries necessary for
max_key codemin_key code 1 keys

XkbModifierMapMask Theanin_key codandmax_key codelds of thexkb
parameter are used to allocate th@dmapfield of the cli-
ent map. The field is allocated to contain the maximum
number of entries necessary foax_key code
min_key code 1 keys.

Note Themin_key codandmax_key codfelds of thexkb parameter must be legal values
if the XkbKeySymsMask or XkbModifierMapMask masks are set in thehich
parameter. If they are not validkbAllocClientMapreturnsBadValue .

If the client map of the keyboard description is NOILL, and any fields are already allo-
cated in the client magkbAllocClientMapdoes not overwrite the existing values; it sim-
ply ignores that part of the request. The only exception iyygesarray. Iftype counts
greater than the currentim_typedield of the client mapXkbAllocClientMapresizes the
typesarray and resets tmeim_typedield accordingly.

If XkbAllocClientMaps successful, it returrBuccess . Otherwise, it can return either
BadMatch , BadAlloc , orBadValue errors.

14.5.2 Freeing a Client Map

To free memory used by the client map member oflkdobescRec structure, use
XkbFreeClientMap.

void XkbFreeClientMap (xkb, which, free_a)l

XkbDescPtr xkb; /* keyboard description containing client map to free */
unsigned int which /* mask identifying components of map to free */
Bool free_alt /* True => free all client components and map itself */

XkbFreeClientMagrees the components of client map specifiegvhich in the XkbDe-

scRec structure specified by thékb parameter, and sets the corresponding structure com-
ponent values tblULL Thewhich parameter specifies a combination of the client map
masks shown in Table 14.3.

If free_allis True , whichis ignored;XkbFreeClientMagrees every nomNULL structure
component in the client map, frees XidClientMapRec structure referenced by the
mapmember of thekb parameter, and sets thpmember taNULL.

14.5.3 Allocating an Empty Server Map
To allocate and initialize an empty server map description recor&kigdlocServer-

Map.

StatusXkbAllocServerMap (xkb, which, count_acks
XkbDescPtr xkby * keyboard description in which to allocate server map */
unsigned int which /* mask selecting map components to allocate */
unsigned int count_acts /* value ofnum_actdield in map to be allocated */

February 5, 1996 Library Version 1.0/Document Revision 1.0 123

The X Keyboard Extension 14 Xkb Keyboard Mapping

XkbAllocServerMapllocates and initializes an empty server map irséneerfield of the
keyboard description specified Righ Thewhich parameter specifies the particular com-
ponents of the server map structure to allocate, as specified in Table 14.4.

Table 14.4 XkbAllocServerMap Masks

Mask Effect

XkbExplicitComponentsMask Thain_key codandmax_key codgelds of thexkbparameter
are used to allocate tleplicitfield of the server map.

XkbKeyActionsMask Thenin_key_codandmax_key_codfelds of thexkbparameter
are used to allocate they_actdield of the server map. The
count_actparameter is used to allocate #uotsfield of the
server map.

XkbKeyBehaviorsMask Thmin_key codandmax_key_codfelds of thexkbparameter
are used to allocate thehaviorsfield of the server map.

XkbVirtualModMapMask Themin_key codandmax_key_codfelds of thexkbparameter
are used to allocate thenodmagield of the server map.

Note Themin_key codandmax_key_codgelds of thexkb parameter must be legal val-
ues. If they are not valikkbAllocServerMapeturnsBadValue .

If the server map of the keyboard description isNdkL and any fields are already allo-
cated in the server ma}kbAllocServerMapgloes not overwrite the existing values. The
only exception is with thactsarray. If thecount_actgparameter is greater than the cur-
rentnum_actdield of the server mapkbAllocServerMapesizes thactsarray and
resets theum_actdield accordingly.

If XkbAllocServerMajis successful, it returrBuccess . Otherwise, it can return either
BadMatch orBadAlloc errors.

14.5.4 Freeing a Server Map
To free memory used by the server member ofldobescRec structure, use

XkbFreeServerMap.

void XkbFreeServerMap(xkb, which, free_all
XkbDescPtr xkb; /* keyboard description containing server map to free */
unsigned int which /* mask identifying components of map to free */
Bool free_alt [* True => free all server map components and server itself */

The XkbFreeServerMafunction frees the specified components of server map in the
XkbDescRec structure specified by thekb parameter, and sets the corresponding struc-
ture component values MULL Thewhich parameter specifies a combination of the
server map masks and is a bitwise inclusive OR of the masks listed in Table 14.4. If
free_allis True , whichis ignored an&kbFreeServerMafrees every nomNULLstructure
component in the server map, freesXkbServerMapRec structure referenced by the
servermember of thetkb parameter, and sets tbervermember taNULL.

February 5, 1996 Library Version 1.0/Document Revision 1.0 124

The X Keyboard Extension

15 Xkb Client Keyboard Mapping

15

Xkb Client Keyboard Mapping

The Xkb client map for a keyboard is the collection of information a client needs to inter-
pret key events from the keyboard. It contains a global list of key types and an array of key
symbol maps, each of which describes the symbols bound to a key and the rules to be used

to interpret

those symbols.

Figure 15.1 shows the relationships between elements in the client map:

unsigned char

(array)

Figure 15.1 Xkb Client Map

size_types
num_types -
|
types —> mods
size_syms | num_levels = J_u
|
sl : ik XkbKTMapEntryRec(s)
! ma apEntryRec(s
Syms : P (array)
key_sym_map ! preserve
|
modmap - | name !
I level_names | >
XkbClientMapRec |
| XkbKeyTypeRec(s) Atom(s)
| (array) (array)
o,
| I
| T ot
— > J_u
|
weycode T N KeySym(s)
| ’ kt_index[0] |M___!| (array)
|
| kt_index[1] |
|
| kt_index[2] |
|
i kt_index[3] |
: group_info :
l width E
|
! offset L !
|
i XkbSymMapRec(s)
| (array)
|
:
I_ _|_ _ _>| =
—

February 5, 1996

Library Version 1.0/Document Revision 1.0

125

The X Keyboard Extension 15 Xkb Client Keyboard Mapping

15.1

15.2

The XkbClientMapRec Structure

Themapfield of the complete Xkb keyboard description (see section 6.1) is a pointer to
the Xkb client map, which is of typ&bClientMapRec

typedef struct { [* Client Map */
unsigned char size_types; [* # occupied entriggpes*/
unsigned char num_types; [* # entriesyipes*/
XkbKeyTypePtr types; /* vector of key types used by this keymap */
unsigned short size_syms; * length of #yensarray */
unsigned short num_syms; [* # entriesyms*/
KeySym * syms; /* linear 2d tables of keysyms, 1 per key */
XkbSymMapPtr key sym_map; /* 1 per keycode, maps keycodgns*/
unsigned char * modmap; /* 1 per keycode, real mods bound to key */

} XkbClientMapRec, *XkbClientMapPtr;

The following sections describe each of the elements ofkb€lientMapRec structure
in more detalil.

Key Types

Key types are used to determine the shift level of a key given the current state of the key-
board. The set of all possible key types for the Xkb keyboard description are held in the
typesfield of the client map, whose total size is storesize_typesand whose total num-

ber of valid entries is stored mum_typesKey types are defined using the following
structures:

typedef struct { I* Key Type */
XkbModsRec mods; /* modifiers used to compute shift level */
unsigned char num_levels; /* total # shift levels, do not modify directly */
unsigned char map_count; /* # entriesmap, preservéif non-NULL) */
XkbKTMapEntryPtr map; * vector of modifiers for each shift level */
XkbModsPtr preserve; /* mods to preserve for corresponaiagentry */
Atom name; [* name of key type */
Atom * level_names; /* array of names of each shift level */

} XkbKeyTypeRec, *XkbKeyTypePtr;

typedef struct { /* Modifiers for a key type */
Bool active; [*True => entry active when determining shift level */
unsigned char level; /* shift level if modifiers matciods*/
XkbModsRec mods; /* mods needed for this level to be selected */

} XkbKTMapEntryRec ,*XkbKTMapEntryPtr;

Themodsfield of a key type is akkbModsRec (see section 7.2) specifying the modifiers

the key type uses when calculating the shift level, and can be composed of both the core
modifiers and virtual modifiers. To set the modifiers associated with a key type, modify
thereal_modsandvmodsfields of themodsXkbModsRec accordingly. Thenaskfield of

the XkbModsRec is reserved for use by Xkb, and is calculated fronréhé modsand
vmodsfields.

Thenum_leveldield holds the total number of shift levels for the key type. Xkb uses
num_levelgo ensure the array of symbols bound to a key is large enough. Do not modify
num_levelslirectly to change the number if shift levels for a key type. Instead, call
XkbResizeKeyTygeee section 15.2.3).

February 5, 1996 Library Version 1.0/Document Revision 1.0 126

The X Keyboard Extension 15 Xkb Client Keyboard Mapping

Themapfield is a vector oKkbKTMapEntryRec structures, withmap_coungentries, that
specify the modifier combinations for each possible shift level. Each map entry contains
anactivefield, amodsfield, and develfield. Theactivefield determines whether the
modifier combination listed in thmodsfield should be considered when determining shift
level. If activeis False , thismapentry is ignored. lactiveis True , thelevelfield of the
mapentry specifies the shift level to use when the current modifier combination matches
the combination specified in tmeodsfield of themapentry.

Any combination of modifiers not explicitly listed somewhere inrttapyields shift level
one. In additionmapentries specifying unbound virtual modifiers are not considered.

Any modifiers specified imodsare normallyconsumedy XkbTranslateKeyCodgsee
section 12.1.3). For those rare occasions a modgifiealdbe considered despite having
been used to look up a symbol, key types include an oppoestrvefield. If apreserve
member of a key type is nbIULL, it represents a list of modifiers where each entry corre-
sponds directly to one of the key typaigp Each entry lists the modifiers that shontt

be consumed if the matching map entry is used to determine shift level.

Each shift level has a name and these names are heldewv¢henamesrray, whose
length isnum_levelsThe type itself also has a nhame, which is held im#mefield.

For example, consider how the server handles the following possible symbolic description
of a possible key type (Note that the format used to specify keyboard mappings in the
server database is not specified by the Xkb extension, although this format is one possible

example.):
Table 15.1 Example Key Type

Symbolic Description Key Type Data Structure

type “ALPHATHREE" { Xkb->map->types][i].name
modifiers = Shift+Lock+LevelThree; Xkb->map->types[i].mods
map[None]= Levell, Xkb->map->types[i].map[0]
map[Lock]= Levell; Xkb->map->types]i].map[1]
map[Shift]= Level2; Xkb->map->types|i].map|[2]
map|[LevelThree]= Level3; Xkb->map->types[i].map[3]
map[Shift+LevelThree]= Level3; Xkb->map->types|i].map[4]
preserve[None]= None; Xkb->map->types]i].perserve[0]
preserve[Lock]= Lock; Xkb->map->types]i].preserve[1]
preserve[Shift]= None; Xkb->map->types]i].preserve[2]
preserve[LevelThree]= None; Xkb->map->types]i].preserve[3]
preserve[Shift+Level3]= None; Xkb->map->types]i].preserve[4]
level name[Levell]= “Base”; Xkb->map->typesJi].level_names[0]
level_name[Level2]= “Caps”; Xkb->map->types]i].level_names[1]
level_namel[Level3]= “Level3”; Xkb->map->types]i].level_names[2]

¥

Thenameof the example key type is “ALPHATHREE,” and the modifiers it pays atten-
tion to areShift , Lock , and the virtual modifiekevelThree . There are three shift lev-
els. The name of shift level one is “Base,” the name of shift level two is “Caps,” and the
name of shift level three is “Level3.”

February 5, 1996 Library Version 1.0/Document Revision 1.0 127

The X Keyboard Extension 15 Xkb Client Keyboard Mapping

Given the combination of thmapandpreservespecifications, there are fiveapentries.

The first map entry specifies that shift level one is to be used if no modifiers are set. The
second entry specifies theck modifier alone also yields shift level one. The third entry
specifies theshift modifier alone yields shift level two. The fourth and fifth entries
specify that the virtudlevelThree modifier alone, or in combination with tishift

modifier, yields shift level three.

Note Shift level three can only be reached if the virtual modifexelThree is bound to
a real modifier (see section 16.4)Lé&velThree is not bound to a real modifier, the
mapentries associated with it are ignored.

Because theock modifier is to be preserved for further event processingrémserve

list is notNULL, and parallels thmaplist. All preserveentries, except for the one corre-
sponding to thenapentry that specifies tHeock modifier, do not list any modifiers. For
themapentry that specifies theock modifier, the correspondireservdist entry lists

theLock modifier, meaning do not consume tloek modifier. In this particular case, the
preserved modifier is passed to Xlib translation routines and causes them to notice that the
Lock modifier is set; consequently, the Xlib routines apply the appropriate capitalization
rules to the symbol. Since this preserve entry is set only for a modifier which yields shift
level one, the capitalization occurs only for level one symbols.

15.2.1 The Canonical Key Types

Xkb allows up taXkbMaxKeyTypes (255) key types to be defined, but requires at least
XkbNumRequiredTypes (4) predefined types to be in a key map. These predefined key
types are referred to as the canonical key types and describe the types of keys available on
most keyboards. The definitions for the canonical key types are held in théiiksim-
RequiredTypes entries of theypesfield of the client map, and are indexed using the
following constants:

XkbOneLevellndex
XkbTwoLevelindex
XkbAlphabeticindex
XkbKeypadindex

ONE_LEVEL

The ONE_LEVEL key type describes groups that have only one symbol. The default
ONE_LEVEL key type has no map entries and does not pay attention to any modifiers. A
symbolic representation of this key type could look like the following:

type “ONE_LEVEL” {
modifiers = None;
map[None]= Levell;
level_name[Levell]= “Any”;

¥
The description of the ONE_LEVEL key type is stored intyipe$XkbOneLevelln-
dex] entry of the client key map.
TWO_LEVEL

The TWO_LEVEL key type describes groups that consist of two symbols but are neither
alphabetic nor numeric keypad keys. The default TWO_LEVEL type uses or8hithe

February 5, 1996 Library Version 1.0/Document Revision 1.0 128

The X Keyboard Extension 15 Xkb Client Keyboard Mapping

modifier. It returns shift level two $hift is set, and level one if it is not. A symbolic
representation of this key type could look like the following:

type “TWO_LEVEL” {
modifiers = Shift;
map[Shift]= Level2;
level_name|[Levell]= “Base”;
level_name[Level2]= “Shift”;
¥
The description of the TWO_LEVEL key type is stored intgipe$XkbTwolLevelin-
dex] entry of the client key map.

ALPHABETIC

The ALPHABETIC key type describes groups consisting of two symbols: the lowercase
form of a symbol followed by the uppercase form of the same symbol. The default
ALPHABETIC type implements locale-sensitive “Shift cancels CapsLock” behavior
using both thé&hift andLock modifiers as follows:

e If Shift andLock are both set, the default ALPHABETIC type yields level one.

- If Shift alone is set, it yields level two.

« If Lock alone is set, it yields level one, but preserved.dek modifier so Xlib
notices and applies the appropriate capitalization riiles. Xlib routines are
locale-sensitive, and apply different capitalization rules for different locales.

 If neitherShift norLock is set, it yields level one.

A symbolic representation of this key type could look like the following:

type “ALPHABETIC” {
modifiers = Shift+Lock;
map[Shift]= Level2;
preserve[Lock]= Lock;
level _name[Levell]= “Base”;
level _name[Level2]= “Caps”;

¥
The description of the ALPHABETIC key type is stored intiipe$XkbAlphabe-
ticindex] entry of the client key map.

KEYPAD

The KEYPAD key type describes groups that consist of two symbols, at least one of
which is a numeric keypad symbol. The numeric keypad symbol is assumed to reside at
level two. The default KEYPAD key type implements “Shift cancels NumLock” behavior
using the Shift modifier and the real modifier bound to the virtual modifier named “Num-
Lock,” known as théNumLock modifier, as follows:

If Shift andNumLock are both set, the default KEYPAD type yields level one.
If Shift alone is set, it yields level two.

If NumLock alone is set, it yields level two.

If neitherShift norNumLock is set, it yields level one.

February 5, 1996 Library Version 1.0/Document Revision 1.0 129

The X Keyboard Extension 15 Xkb Client Keyboard Mapping

A symbolic representation of this key type could look like the following:

type “KEYPAD” {
modifiers = Shift+NumLock;
map[None]= Levell;
map[Shift]= Level2;
map[NumLock]= Level2;
map[Shift+NumLock]= Level1;
level_name[Levell]= “Base”;
level_name[Level2]= “Caps”;
¥
The description of the KEYPAD key type is stored intifpe$XkbKeypadindex] entry
of the client key map.

Initializing the Canonical Key Types in a New Client Map

To set the definitions of the canonical key types in a client map to their default values, call
XkbInitCanonicalKeyTypes.

StatusXkblnitCanonicalKeyTypes(xkb, which, keypadvVMdd

XkbDescPtr xkby; [* keyboard description containing client map to initialize */
unsigned int which /* mask of types to initialize */
int keypadVMod /* index of NumLock virtual modifier */

XkblInitCanonicalKeyTypesitializes the firsiXkbNumRequiredTypes key types of the
keyboard specified by the&b parameter to their default values. Tieich parameter

specifies what canonical key types to initialize and is a bitwise inclusive OR of the follow-
ing masksXkbOnelLevelMask , XkbTwoLevelMask , XkbAlphabeticMask , and
XkbKeypadMask . Only those canonical types specified bywhechmask are initialized.

If XkbKeypadMask is set in thavhich parameter)XkblinitCanonicalKeyTypdsoks up
theNumLock named virtual modifier to determine which virtual modifier to use when ini-
tializing the KEYPAD key type. If th&lumLock virtual modifier does not exisKkblnit-
CanonicalKeyTypesreates it.

XkbInitCanonicalKeyTypesormally returns Success. It retuBedAccess if the Xkb
extension has not been properly initialized, BadAccess if the xkb parameter is not
valid.

15.2.2 Getting Key Types from the Server
To obtain the list of available key types in the server's keyboard mappingkb&iet-

KeyTypes
StatusXkbGetKeyTypes(dpy; first, num xkb
Display * dpy, /* connection to X server */
unsigned int first; [* index to first type to get, 0 => 1st type */
unsigned int num /* number of key types to be returned */
XkbDescPtr xkby /* keyboard description containing client map to update */

Note XkbGetKeyTypeis used to obtain descriptions of the key types themselves, not the
key types bound to individual keys. To obtain the key types bound to an individual
key, refer to thé&key _sym_mapeld of the client map (see section 15.3.1).

February 5, 1996 Library Version 1.0/Document Revision 1.0 130

The X Keyboard Extension 15 Xkb Client Keyboard Mapping

XkbGetKeyTypegueries the server for the desired types, waits for a reply, and returns the
desired types in thekb->map->typeslf successful, it returns Success.

XkbGetKeyTypeeturnsBadAccess if the Xkb extension has not been properly initial-
ized, andBadValue if the combination ofirst andnumresults in numbers out of valid
range.

15.2.3 Changing the Number of Levels in a Key Type
To change the number of levels in a key type, X&liiResizeKeyType
StatusXkbResizeKeyTypdxkb, type _ndxmap_countwant_preservenew_num_Ivls

XkbDescPtr xkb; * keyboard description containing client map to update */
int type_ndx /* index in xkb->map->types of type to change */

int map_count /* total # of map entries needed for the type */

Bool want_preserve /* True => list of preserved maodifiers is necessary */

int new_num_lIvis /* new max # of levels for type */

XkbResizeKeyTymdhanges the type specified Xkb->map->typeftype_ndx and reallo-
cates the symbols and actions bound to all keys that use the type, if necédsasy.
sizeKeyTypepdates only the local copy of the typeshiy to update the server’s copy
for the physical device, ustkbSetMamr XkbChangeMagafter callingXkbResizeKey-

Type

Themap_counparameter specifies the total number of map entries needed for the type,
and can be 0 or greaternifap_counts 0,XkbResizeKeyTygeees the existinghapand
preserveentries for the type if they exist and sets thefWhL

Thewant_preservg@arameter specifies whethepr@servdist for the key should be cre-
ated. Ifwant_preservés True , thepreservdist with map_counentries is allocated or
reallocated if it already exists. Otherwisewdnt_preservés False , thepreservdield is
freed if necessary and setNoJLL

Thenew_num_Iviparameter specifies the new maximum number of shift levels for the
type and is used to calculate and resize the symbols and actions bound to all keys that use
the type.

If type_ndxdoes not specify a legal typeew_num_Iviss less than 1, or threap_counts
less than OXkbResizeKeyTypeturnsBadValue . If XkbResizeKeyTymncounters any
problems with allocation, it returigadAlloc . Otherwise, it returnSuccess .

15.2.4 Copying Key Types
UseXkbCopyKeyTypandXkbCopyKeyTypet® copy one or morkbKeyTypeRec

structures.

StatusXkbCopyKeyType(from, into)
XkbKeyTypePtr from; /* pointer to XkbKeyTypeRec to be copied */
XkbKeyTypePtr into; /* pointer to XkbKeyTypeRec to be changed */

XkbCopyKeyTypeopies the key type specified fypm to the key type specified bgto.
Both must point to legafkbKeyTypeRec structures. Xkb assum&em andinto point to
different places. As a result, overlaps can be fxtddCopyKeyTyptees any existing
map preserve andlevel _name#n into prior to copying. If any allocation errors occur

February 5, 1996 Library Version 1.0/Document Revision 1.0 131

The X Keyboard Extension 15 Xkb Client Keyboard Mapping

while copyingfrom to into, XkbCopyKeyTypeeturnsBadAlloc . Otherwise XkbCopy-
KeyTypecopiesfrom to into and return$Success .

StatusXkbCopyKeyTypes(from, into, num_typeks

XkbKeyTypePtr from; [* pointer to array of XkbKeyTypeRecs to copy */
XkbKeyTypePtr into; [* pointer to array of XkbKeyTypeRecs to change */
int num_types /* number of types to copy */

XkbCopyKeyTypasopiesnum_typeXkbKeyTypeRec structures from the array specified

by frominto the array specified bgto. It is intended for copying between, rather than
within, keyboard descriptions, so it doesn’t check for overlaps. The same rules that apply
to thefrom andinto parameters iXkbCopyKeyTypepply to each entry of tHfeom and

into arrays oiXkbCopyKeyTypesf any allocation errors occur while copyifrgm to

into, XkbCopyKeyTypa®turnsBadAlloc . Otherwise XkbCopyKeyTypesopiesfrom to

into and returnSuccess .

15.3 Key Symbol Map

The entire list of key symbols for the keyboard mapping is held isytinsfield of the cli-

ent map. Whereas the core keyboard mapping is a two-dimensional akeysgis

whose rows are indexed by keycode,shensfield of Xkb is a linear list oKeySyms that

needs to be indexed uniquely for each key. This section describes the key symbol map and
the methods for determining the symbols bound to a key.

The reason theymsfield is a linear list oKeySyms is to reduce the memory consumption
associated with a keymap; because Xkb allows individual keys to have multiple shift lev-
els and a different number of groups per key, a single two-dimensional aKeySyims

would potentially be very large and sparse. Instead, Xkb provides a small two-dimen-
sional array oKeySyms for each key. To store all of these individual arrays, Xkb concat-
enates each array together in sigensfield of the client map.

In order to determine whidkeySyms in thesymsfield are associated with each keycode,
the client map contains an array of key symbol mappings, held ketheaym_mafield.
Thekey sym_mafield is an array oKkbSymMapRecstructures indexed by keycode. The
key_sym_magprray hasnin_key codenused entries at the start to allow direct indexing
using a keycode. All keycodes falling between the minimum and maximum legal key-
codes, inclusive, havey_sym_magprrays, whether or not any key actually yields that
code. TheKeySymMapRecstructure is defined as follows:

#define XkbNumKbdGroups 4

#define XkbMaxKbdGroup (XkbNumKbdGroups-1)

typedef struct { /* map to keysyms for a single keycode */
unsigned char kt_index[XkbNumKbdGroups]; /* key type index for each group */
unsigned char group_info; [* # of groups and out of range group handling */
unsigned char width; [* max # of shift levels for key */
unsigned short offset; /* index to keysym tablesymsarray */

} XkbSymMapRec, *XkbSymMapPtr;
These fields are described in detail in the following sections.

February 5, 1996 Library Version 1.0/Document Revision 1.0 132

The X Keyboard Extension 15 Xkb Client Keyboard Mapping

15.3.1 Per-Key Key Type Indices

Thekt_indexarray of thexkbSymMapRecstructure contains the indices of the key types
(see section 15.2) for each possible group of symbols associated with the key. To obtain
the index of a key type or the pointer to a key type, Xkb provides the following macros, to
access the key types:

Note The array of key types is of fixed width and is large enough to hold key types for the
maximum legal number of groupXkbNumKbdGroups, currently four); if a key
has fewer thalXXkbNumKbdGroups groups, the extra key types are reported but

ignored.
int XkbKeyTypelndex(xkb, keycode, groQp /* macro*/
XkbDescPtr xkby /* Xkb description of interest */
KeyCode keycode [* keycode of interest */
int group /* group index */

XkbKeyTypelndegomputes an index into tiygpesvector of the client map ixkb from
the givenkeycodeandgroupindex.

XkbKeyTypePtrXkbKeyType (xkb, keycode, groQg* macro */

XkbDescPtr xkby /* Xkb description of interest */
KeyCode keycode /* keycode of interest */
int group, [* group index */

XkbKeyTypeeturns a pointer to the key type in tgpesvector of the client map ixkb
corresponding to the givédeeycodeandgroupindex.

15.3.2 Per-Key Group Information

Thegroup_infofield of anXkbSymMapRecis an encoded value containing the number of
groups of symbols bound to the key as well as the specification of the treatment of
out-of-range groups. It is legal for a key to have zero groups, in which case it also has zero
symbols and all events from that key yi&ldSymbol. To obtain the number of groups of
symbols bound to the key, uX&bKeyNumGroupso change the number of groups

bound to a key, usékbChangeTypesOfKégee section 15.3.6). To obtain a mask that
determines the treatment of out-of-range groupsXub&eyGrouplnfandXkbOutOf-
RangeGrouplinfo

The keyboard controls (see Chapter 10) contgroaps_wragield specifying the han-

dling of illegal groups on a global basis. That is, when the user performs an action causing
the effective group to go out of the legal range gitteips_wragfield specifies how to
normalize the effective keyboard group to a group which is legal for the keyboard as a
whole, but there is no guarantee that the normalized group will be within the range of legal
groups for any individual key. The per-kgsoup_infofield specifies how a key treats a

legal effective group if the key does not have a type specified for the group of concern.
For example, th&nter key usually has just one group defined. If the user performs an
action causing the global keyboard group to chan@&dop2 , thegroup_infofield for

theEnter key describes how to handle this situation.

Out-of-range groups for individual keys are mapped to a legal group using the same
options as are used for the overall keyboard group. The particular type of mapping used is

February 5, 1996 Library Version 1.0/Document Revision 1.0 133

The X Keyboard Extension 15 Xkb Client Keyboard Mapping

controlled by the bits set in tiggoup_infoflag, as shown in Table 15.2. See section 10.7.1
on page 70 for more details on the normalization methods in this table.

Table 15.2 group_info Range Normalization

Bits set in group_info Normalization method
XkbRedirectintoRange XkbRedirectintoRange
XkbClamplintoRange XkbClamplintoRange
none of the above XkbWrapIntoRange

Xkb provides the following macros to access group information:

int XkbKeyNumGroups(xkb, keycode /* macro */

XkbDescPtr xkby /* Xkb description of interest */

KeyCode keycode [* keycode of interest */
XkbKeyNumGroupeeturns the number of groups of symbols bound to the key corre-
sponding tckeycode
unsigned chaxkbKeyGrouplnfo (xkb, keycode /*macro */

XkbDescPtr xkby /* Xkb description of interest */

KeyCode keycode /* keycode of interest */

XkbKeyGrouplnfaeturns thegroup_infofield from thexkbSymMapRecstructure associ-
ated with the key correspondingkeycode

unsigned chaxkbOutOfRangeGrouplnfo (grp_inf)/* macro */
unsigned char grp_inf, /* group_info field ofXkbSymMapRec*/

XkbOutOfRangeGrouplinf@turns only the out-of-range processing information from the
group_infofield of anXkbSymMapRecstructure.

unsigned chaxkbOutOfRangeGroupNumber(grp_inf)/* macro */
unsigned char grp_inf; I* group_info field ofXkbSymMapRec*/

XkbOutOfRangeGroupNumbeaturns the out-of-range group number, represented as a
group index, from thgroup_infofield of anXkbSymMapRecstructure.

15.3.3 Key Width

The maximum number of shift levels for a type is also referred to as the width of a key
type. Thewidthfield of thekey sym_mapntry for a key contains the width of the widest
type associated with the key. Thalth field cannot be explicitly changed; it is updated
automatically whenever the symbols or set of types bound to a key are changed.

15.3.4 Offset in to the Symbol Map

The key width and number of groups associated with a a key are used to form a small
two-dimensional array dfeySyms for a key. This array may be different sizes for differ-

ent keys. The array for a single key is stored as a linear list, in row-major order. The arrays
for all of the keys are stored in tegmsfield of the client map. There is one row for each
group associated with a key, and one column for each level. The index corresponding to a
given group and shift level is computed as:

idx = group_index * key_width + shift_level

February 5, 1996 Library Version 1.0/Document Revision 1.0 134

The X Keyboard Extension 15 Xkb Client Keyboard Mapping

Theoffsetfield of thekey _sym_magpntry for a key is used to access the beginning of the
array.

Xkb provides the following macros, for accessingwidth andoffsetfor individual keys,
as well as macros for accessing the two-dimensional array of symbols bound to the key:

int XkbKeyGroupsWidth (xkb, keycode /* macro */
XkbDescPtr xkby /* Xkb description of interest */
KeyCode keycode /* keycode of interest */

XkbKeyGroupsWidthomputes the maximum width associated with the key correspond-
ing tokeycode

int XkbKeyGroupWidth (xkb, keycode, gip /* macro */

XkbDescPtr xkby /* Xkb description of interest */
KeyCode keycode [* keycode of interest */
int arp; /* group of interest */

XkbKeyGroupWidtltomputes the width of the type associated with the gygufor the
key corresponding tkeycode

int XkbKeySymsOffsei(xkb, keycode /* macro */
XkbDescPtr xkby /* Xkb description of interest */
KeyCode keycode [* keycode of interest */

XkbKeySymsOffsetturns the offset of the two-dimensional array of keysyms for the key
corresponding t&eycode

int XkbKeyNumSyms(xkb, keycode /* macro */

XkbDescPtr xkhy /* Xkb description of interest */

KeyCode keycode /* keycode of interest */
XkbKeyNumSynreturns the total number of keysyms for the key correspondikeyto
code
KeySym * XkbKeySymsPtr(xkb, keycode /* macro */

XkbDescPtr xkb; /* Xkb description of interest */

KeyCode keycode /* keycode of interest */

XkbKeySymsPteturns the pointer to the two-dimensional array of keysyms for the key
corresponding tkeycode

KeySymXkbKeySymEntry (xkb, keycode, shift, gifs macro */

XkbDescPtr xkby /* Xkb description of interest */
KeyCode keycode /* keycode of interest */

int shift, [* shift level of interest */

int arp; /* group of interest */

XkbKeySymEntrgeturns thé&eysym corresponding to shift levehiftand grougrp
from the two-dimensional array of keysyms for the key correspondikeytmde

February 5, 1996 Library Version 1.0/Document Revision 1.0 135

The X Keyboard Extension 15 Xkb Client Keyboard Mapping

15.3.5 Getting the Symbol Map for Keys from the Server
To obtain the symbols for a subset of the keys in a keyboard descriptiofklo@iktKey-

Syms
StatusXkbGetKeySymgdpy; first, num xkb)
Display * dpy, [* connection to X server */
unsigned int first; /* keycode of first key to get */
unsigned int numn /* number of keycodes for which syms desired */
XkbDescPtr xkhby /* Xkb description to be updated */

XkbGetKeySymsends a request to the server to obtain the set of keysyms bowmd to
keys starting with the key whose keycodérs. It waits for a reply, and returns the key-
syms in themap.symdield of xkb. If successfulXkbGetKeySym®turnsSuccess . The
xkb parameter must be a pointer to a valid Xkb keyboard description.

If the clientmapin thexkb parameter has not been allocatekhGetKeySymallocates
and initializes it before obtaining the symbols.

If a compatible version of Xkb is not available in the server or the Xkb extension has not
been properly initialized{kbGetKeySym®turnsBadAccess . If numis less than 1 or
greater tharxkbMaxKeyCount , XkbGetKeySymeturnsBadValue . If any allocation

errors occurXkbGetKeySymeturnsBadAlloc

15.3.6 Changing the Number of Groups and Types Bound to a Key
To change the number of groups and the types bound to a keykb@hangeType-

sOfKey

StatusXkbChangeTypesOfKey(xkb, key n_groups groups new_types_inp_changes
XkbDescPtr xkby /* keyboard description to be changed */
int key, [* keycode for key of interest */
int n_groups /* new number of groups for key */
unsigned int groups /* mask indicating groups to change */
int * new_types_in /* indices for new groups specifiedgnoups*/

XkbMapChangesPtr p_changes /* notes changes madexkb*/

XkbChangeTypesOfKegallocates the symbols and actions bound to the key, if neces-
sary, and initializes any new symbols or actionsda8ymbol or NoAction , as appropri-
ate. If thep_changeparameter is ndULL, XkbChangeTypesOfKeylds the
XkbKeySymsMask to thechangedield of p_changesand modifies thérst_key synand
num_key synfeelds ofp_changeso include thé&keythat was changed. See section 14.3.1
on page 120 for more information on tKkkoMapChangesPtr structure. If successful,
XkbChangeTypesOfKegturnsSuccess .

Then_groupsparameter specifies the new number of groups for the keygrobes
parameter is a mask specifying the groups for which new types are supplied and is a bit-
wise inclusive OR of the following maskskbGrouplMask , XkbGroup2Mask ,
XkbGroup3Mask , andXkbGroup4Mask .

Thenew_types_iparameter is an integer array of lengtlgroups Each entry represents
the type to use for the associated group and is an indexkiptemap->types The
new_types_imrray is indexed by group index;nf groupsis four andgroupsonly has
GrouplMask andGroup3Mask set,new_types _itooks like this:

February 5, 1996 Library Version 1.0/Document Revision 1.0 136

The X Keyboard Extension 15 Xkb Client Keyboard Mapping

new_types_in[0] = type for Groupl
new_types_in[1] = ignored
new_types_in[2] = type for Group3
new_types_in[3] = ignored

For convenience, Xkb provides the following constants to use as indices to the groups:
Table 15.3 Group Index Constants

Constant Name Value
XkbGrouplindex 0
XkbGroup2Iindex 1
XkbGroup3Iindex 2
XkbGroup4index 3

If the Xkb extension has not been properly initiali2¢khChangeTypesOfKegturns
BadAccess . If the xkb parameter it not valid (that is, it MULL or it does not contain a
valid client map) XkbChangeTypesOfKegturnsBadMatch. If thekeyis not a valid key-
code,n_groupsis greater thaxXkbNumKbdGroups, or thegroupsmask does not contain
any of the valid group mask bitskbChangeTypesOfKegturnsBadValue . If it is neces-
sary to resize the key symbols or key actions arrays and any allocation errors occur,
XkbChangeTypesOfKegturnsBadAlloc

15.3.7 Changing the Number of Symbols Bound to a Key
To change the number of symbols bound to a keyX¢dlResizeKeySyms
KeySym *XkbResizeKeySymgxkh, key neededl

XkbDescRec * xkby /* keyboard description to be changed */
int key, [* keycode for key to modify */
int needed /* new number of keysyms required for key */

XkbResizeKeySymesserves the space neededieededkeysyms and returns a pointer to
the beginning of the new array that holds the keysyms. It adjustéfsletfield of the

key sym_maentry for the key if necessary, and can also changg/thenum_symsand
size_sym8$elds ofxkb->mapif it is necessary to reallocate thgmsarray. XkbResizeKey-
Symgdoes not modify either the width or number of groups associated with the key.

If neededs greater than the current number of keysyms for theXiddyResizeKeySyms
initializes all new keysyms in the arrayNoSymbol .

Since the number of symbols needed by a key is normally computed as width * number of
groups, anKkbResizeKeySyrmdses not modify either the width or number of groups for
the key, a discrepancy exists upon return fithResizeKeySyrhstween the space allo-
cated for the keysyms and the number required. The unused entries in the list of symbols
returned byXkbResizeKeySyrase not preserved across future calls to any of the map
editing functions, so you must update the key symbol mapping (which updates the width
and number of groups for the key) before calling another allocator function.A call to
XkbChangeTypesOfKeayill update the mapping.

If any allocation errors occur while resizing the number of symbols bound to the key,
XkbResizeKeySymesturnsNULL

February 5, 1996 Library Version 1.0/Document Revision 1.0 137

The X Keyboard Extension 15 Xkb Client Keyboard Mapping

Note A change to the number of symbols bound to a key should be accompanied by a
change in the number of actions bound to a key. Refer to section 16.1.16 on page 160
for more information on changing the number of actions bound to a key.

15.4 The Per-Key Modifier Map

Themodmapentry of the client map is an array, indexed by keycode, specifying the real
modifiers bound to a key. Each entry is a mask composed of a bitwise inclusive OR of the
legal real modifiersShiftMask , LockMask , ControlMask , Mod1Mask, Mod2Mask,
Mod3Mask, Mod4Mask, andMod5Mask If a bit is set in anodmapentry, the correspond-

ing key is bound to that modifier.

Pressing or releasing the key bound to a modifier changes the modifier set and unset state.
The particular manner in which the modifier set and unset state changes is determined by
the behavior and actions assigned to the key (see Chapter 16).

15.4.1 Getting the Per-Key Modifier Map from the Server

To update the modifier map for one or more of the keys in a keyboard description, call

XkbGetKeyModifierMap
StatusXkbGetKeyModifierMap (dpy; first, num xkb
Display * dpy, [* connection to X server */
unsigned int first; [* keycode of first key to get */
unsigned int numn /* number of keys for which information is desired */
XkbDescPtr xkhby /* keyboard description to update */

XkbGetKeyModifierMagends a request to the server for the modifier mappingsifor
keys starting with the key whose keycod®ri. It waits for a reply, and places the results
in thexkb->map->modmap array. If successiXikbGetKeyModifiereturnsSuccess .

If the map component of thékb parameter has not been allocat¢klhyGetKeyModifier-
Map allocates and initializes it.

If a compatible version of Xkb is not available in the server or the Xkb extension has not
been properly initializedXkbGetKeySym®turnsBadAccess . If any allocation errors
occur while obtaining the modifier ma}kbGetKeyModifierMapeturnsBadAlloc

February 5, 1996 Library Version 1.0/Document Revision 1.0 138

The X Keyboard Extension 16 Xkb Server Keyboard Mapping

16 Xkb Server Keyboard Mapping

Theserverfield of the complete Xkb keyboard description (see section 6.1) is a pointer to
the Xkb server map.

Figure 16.1 shows the relationships between elements in the server map:

num_acts
size_acts '
i I -~ _>I .
acts — > J'u
— - :
behaviors — J_u ! XkbActions(s)
key acts — | (array)
P | XkbBehaviors(s) |
p ! (array) !
vmods[16] | '
e e = J_H :
vmodmap — | L[(@ """
|
|
XkbServerMapRec | unsigned short(s)
| (array)
|
I
=
R
|
KeyCode - - - - - : unsigned char(s)
| (array)
I
|
[-
L P J_u
unsigned short(s)
(array)

Figure 16.1 Server Map Relationships

The Xkb server map contains the information the server needs to interpret key events, and
is of typeXkbServerMapRec :

#define XkbNumVirtualMods 16
typedef struct { [* Server Map */
unsigned short num_acts; [* # of occupied entriescis*/
unsigned short size_acts; [* # of entriesats*/
XkbAction * acts; /* linear 2d tables of key actions, 1 per keycode */
XkbBehavior * behaviors; /* key behaviors,1 per keycode */
unsigned short* key_acts; /* index indots 1 per keycode */
unsigned char * explicit; [* explicit overrides of core remapping, 1 per key */
unsigned char vmods[XkbNumVirtualMods]; /* real mods bound to virtual mods */

February 5, 1996 Library Version 1.0/Document Revision 1.0 139

The X Keyboard Extension 16 Xkb Server Keyboard Mapping

16.1

unsigned short* vmodmap; /* virtual mods bound to key, 1 per keycode*/
} XkbServerMapRec, *XkbServerMapPtr;

Thenum_actssize_actsacts andkey_actdields specify the key actions, defined in sec-
tion 16.1. Théehaviordfield describes the behavior for each key and is defined in section
16.2. Theexplicitfield describes the explicit components for a key and is defined in sec-
tion 16.3. Thevmodsand thevmodmagields describe the virtual modifiers and the
per-key virtual modifier mapping and are defined in section 16.4.

Key Actions

A key action defines the effect key presses and releases have on the internal state of the
server. For example, the expected key action associated with pressinifttkey is to

set theShift modifier. There is zero or one key action associated with each keysym
bound to each key.

Just as the entire list of key symbols for the keyboard mapping is heldsyntiskeld of
the client map, the entire list of key actions for the keyboard mapping is heldactshe
array of the server map. The total sizecsis specified byize actsand the number of
entries is specified byum_acts

Thekey_actsarray, indexed by keycode, describes the actions associated with a key. The
key_actsarray hasnin_key_ codenused entries at the start to allow direct indexing using

a keycode. If &ey_actentry is0, it means the key does not have any actions associated
with it. If an entry is no0O, the entry represents an index into éleésfield of the server

map, much as theffsetfield of aKeySymMapRecstructure is an index into tisgmsfield

of the client map.

The reason thactsfield is a linear list oXkbAction s is to reduce the memory consump-
tion associated with a keymap. Because Xkb allows individual keys to have multiple shift
levels and a different number of groups per key, a single two-dimensional akey of
Symswould potentially be very large and sparse. Instead, Xkb provides a small
two-dimensional array ofkbAction s for each key. To store all of these individual

arrays, Xkb concatenates each array together iadtsdield of the server map.

The key action structures consist only of fields of type char or unsigned char. This is done
to optimize data transfer when the server sends bytes over the wire. If the fields are any-
thing but bytes, the server has to sift through all of the actions and swap any non-byte
fields. Since they consist of nothing but bytes, it can just copy them out.

Xkb provides the following macros, to simplify accessing information pertaining to key
actions:

Bool XkbKeyHasActions(xkb, keycode /* macro */
XkbDescPtr xkby /* Xkb description of interest */
KeyCode keycode [* keycode of interest */

XkbKeyHasActioneeturnsTrue if the key corresponding keycodéhas any actions
associated with it; otherwise, it returialse .

int XkbKeyNumActions(xkb, keycode /* macro */
XkbDescPtr xkby /* Xkb description of interest */
KeyCode keycode [* keycode of interest */

February 5, 1996 Library Version 1.0/Document Revision 1.0 140

The X Keyboard Extension 16 Xkb Server Keyboard Mapping

XkbKeyNumActionsomputes the number of actions associated with the key correspond-
ing tokeycodeThis should be the same value as the resi{kbKeyNumSyni(see sec-

tion 15.3.3).

XkbKeyActionPtrXkbKeyActionsPtr (xkb, keycodg* macro */
XkbDescPtr xkby /* Xkb description of interest */
KeyCode keycode [* keycode of interest */

XkbKeyActionsPtreturns a pointer to the two-dimensional array of key actions associated
with the key corresponding keycodeUseXkbKeyActionsPtonly if the key actually has
some actions associated with it, thaiikbKeyNumActior{gkb, keycode) returns some-
thing greater than zero.

XkbAction XkbKeyAction (xkb, keycode, igx /* macro */
XkbDescPtr xkby /* Xkb description of interest */
KeyCode keycode /* keycode of interest */
int idx; [* index for group and shift level */

XkbKeyActiorreturns the key action indexed ioi in the two-dimensional array of key
actions associated with the key correspondingi@odeidx may be computed from the
group and shift level of interest as follows:

idx = group_index * key_width + shift_level
XkbAction XkbKeyActionEntry (xkb, keycode, shift, gifs macro */

XkbDescPtr xkby /* Xkb description of interest */
KeyCode keycode /* keycode of interest */

int shift; [* shift level within group */

int arp; [* group index for group of interest */

XkbKeyActionEntryeturns the key action corresponding to grgggpand shift levelvl
from the two-dimensional table of key actions associated with the key corresponding to
keycode

16.1.1 The XkbAction Structure

The description for an action is held in&bAction
possible Xkb action types:

structure, which is a union of all

typedef union _XkbAction {

XkbAnyAction any;
XkbModAction mods;
XkbGroupAction group;
XkbISOAction iSO;
XkbPtrAction ptr;
XkbPtrBtnAction btn;
XkbPtrDfltAction dflt;
XkbSwitchScreenAction screen;
XkbCtrlsAction ctrls;
XkbMessageAction msg;
XkbRedirectKeyAction redirect;
XkbDeviceBtnAction devbtn;

XkbDeviceValuatorAction devval;

February 5, 1996

Library Version 1.0/Document Revision 1.0

141

The X Keyboard Extension 16 Xkb Server Keyboard Mapping

unsigned char type;
} XkbAction;

Thetypefield is provided for convenience and is the same as the type field in the individ-
ual structures. The following sections describe the individual structures for each action in
detail.

16.1.2 The XkbAnyAction Structure
The XkbAnyAction structure is a convenience structure that refers to any of the actions:

#define XkbAnyActionDataSize 7
typedef struct _XkbAnyAction {
unsigned char type; [* type of action; determines interpretation for data */

unsigned char data[XkbAnyActionDataSize];
} XkbAnyAction ;

Thedatafield represents a structure for an action, and its interpretation depends upon the
typefield. The valid values for thigpefield, and the data structures associated with them
are shown in Table 16.1:

Table 16.1 Action Types

Type Structure for Data Xk.b Action Section
union member
XkbSA NoAction XkbSA NoAction means the server any

does not perform an action for the key;
this action does not have an associated
data structure.

XkbSA SetMods XkbModAction mods 16.1.3
XkbSA_LatchMods
XkbSA_LockMods

XkbSA_SetGroup XkbGroupAction group 16.1.4
XkbSA_LatchGroup
XkbSA_LockGroup

XkbSA MovePtr XkbPtrAction ptr 16.1.5
XKbSA_PtrBtn XkbPtrBtnAction btn 16.1.6
XKkbSA LockPtrBtn

XkbSA SetPtrDflt XkbPtrDfltAction dflt 16.1.7
XkbSA 1SOLock XkbISOAction iso 16.1.8
XkbSA SwitchScreen XkbSwitchScreenAction screen 16.1.9
XkbSA SetControls XkbCtrlsAction ctrls 16.1.10
XkbSA_LockControls

XkbSA ActionMessage XkbMessgeAction msg 16.1.11
XkbSA RedirectKey XkbRedirectKeyAction redirect 16.1.12
XkbSA DeviceBtn XkbDeviceBtnAction devbtn 16.1.13
XKbSA _LockDeviceBtn

XkbSA DeviceValuator XkbDeviceValuatorAction devval 16.1.14

16.1.3 Actions for Changing Modifiers’ State

Actions associated with thé&kbModAction structure change the state of the modifiers
when keys are pressed and released (see Chapter 7 for a discussion of modifiers):

February 5, 1996 Library Version 1.0/Document Revision 1.0 142

The X Keyboard Extension 16 Xkb Server Keyboard Mapping

typedef struct _XkbModAction {

unsigned char type; XkbSA {Set|Latch|Lock}Mods */
unsigned char flags; /* wittype controls the effect on modifiers */
unsigned char ~ mask; Bame asnaskfield of a modifier descriptioty

unsigned char real_mods; /* sameraal_moddfield of a modifier descriptiot/

unsigned char ~ vmodsl; /* derived frormodsfield of a modifier descriptioty

unsigned char ~ vmods2; /* derived frarmodsfield of a modifier descriptioty
} XkbModAction ;

In the following description, the teraction modifiersneans the real modifier bits associ-
ated with this action. Depending on the valuflags (see Table 16.3 on page 145), these
are designated either in theaskfield of theXkbModAction structure itself, or the real
modifiers bound to the key for which the action is being used. In the latter case, this is the
clientmap>modmajpkeycodéfield.

Thetypefield can have any of the values shown in Table 16.2.
Table 16.2 Modifier Action Types

Type Effect
XkbSA_SetMods « A key press adds any action modifiers to the keyboard’s base modi-
fiers.

» A key release clears any action modifiers in the keyboard’s base
modifiers, provided no other key affecting the same modifiers is
logically down.

* If no other keys are physically depressed when this key is released,
andXkbSA ClearLocks is set in thdlagsfield, the key release
unlocks any action modifiers.

XkbSA_LatchMods . key press and key release events have the same effect as for
XkbSA_ SetMods ; if no keys are physically depressed when this
key is released, key release events have the following additional
effects:

» Modifiers unlocked due t§kbSA ClearLocks have no further
effect.

 If XkbSA LatchToLock is set in thdlagsfield, a key release
locks and then unlatches any remaining action modifiers that are
already latched.

» A key release latches any action modifiers not used by the
XkbSA_ClearLocks andXkbSA_LatchToLock flags.

XkbSA_LockMods A key press sets the base state of any action modifiers. If
XkbSA_LockNoLock is set in thdlagsfield, a key press also sets
the locked state of any action modifiers.

» A key release clears any action modifiers in the keyboard’s base
modifiers, provided no other key that affects the same modifiers is
down. If XkbSA_LockNoUnlock is not set in thélagsfield, and
any of the action modifiers were locked before the corresponding
key press occurred, a key release unlocks them.

February 5, 1996 Library Version 1.0/Document Revision 1.0 143

The X Keyboard Extension 16 Xkb Server Keyboard Mapping

Theflagsfield is composed of the bitwise inclusive OR of the masks shown in Table 16.3.
A general meaning is given in the table, but the exact meaning depends upon the action

type
Table 16.3 Modifier Action Flags

Flag Meaning

XkbSA_UseModMapMods If set, the action modifiers are determined by the modifiers
bound by the modifier mapping of the key. Otherwise, the
action modifiers are set to the modifiers specified by the
mask real_modsvmodl andvmod2fields.

XkbSA ClearLocks If set and no keys are physically depressed when this key
transition occurs, the server unlocks any action modifiers.

XkbSA _LatchToLock If set, and the action type ¥kbSA _LatchMods , the server
locks the action modifiers if they are already latched.

XkbSA LockNoLock If set, and the action type #¥kbSA LockMods, the server
only unlocks the action modifiers.

XkbSA_LockNoUnlock If set, and the action MkbSA_LockMods , the server only

locks the action modifiers.

If XkbSA_ UseModMapModsis not set in thélagsfield, themaskreal modsvmods]land
vmodsZields are used to determine the action modifiers. Otherwise they are ignored and
the modifiers bound to the key (cliamap>modmajpkeycodd are used instead.

Themaskreal _modsvmods] andvmodsZields represent the components of an Xkb
modifier description (see section 7.2). While thaskandreal _moddfields correspond
directly to themaskandreal _moddields of an Xkb modifier description, tvenodsland
vmodsZields are combined to correspond to ¥ineodsfield of an Xkb modifier descrip-
tion. Xkb provides the following macros, to convert between the two formats:

unsigned shoXkbModActionVMods (act) /* macro */
XkbAction act [* action from which to extract virtual mods */

XkbModActionVModseturns the'emodslandvmodsZields ofactconverted to themods
format of an Xkb modifier description.

void XkbSetModActionVMods(act, vmod}s /* macro */
XkbAction act /* action in which to set vmods */
unsigned short vmods /* virtual mods to set */

XkbSetModActionVModsets thesrmodslandvmodsZields ofactusing thevmodsformat
of an Xkb modifier description.

Note Despite the fact that the first parameter of these two macros is of type XkbAction,
these macros may only be used with Actions of ¥ideModAction andXkblSO-
Action

16.1.4 Actions for Changing Group State

Actions associated with thékbGroupAction structure change the current group state
when keys are pressed and released (see Chapter 5 for a description of groups and key-
board state):

typedef struct _XkbGroupAction {
unsigned char type; XkbSA_{Set|Latch|Lock}Group */
unsigned char flags; I* wittype controls the effect on groups */

February 5, 1996 Library Version 1.0/Document Revision 1.0 144

The X Keyboard Extension

16 Xkb Server Keyboard Mapping

char

} XkbGroupAction ;

group_XXX; /* represents a group index or delta */

Thetypefield can have any of the following values:

Table 16.4 Group Action Types

Type

Effect

XkbSA_SetGroup

XkbSA_LatchGroup

XkbSA_LockGroup

« If the XkbSA_ GroupAbsolute bit is set in thdlagsfield, key press
events change the base keyboard group to the group specified by the
group_XXXfield. Otherwise key press events change the base key-
board group by adding tlgroup_XXXfield to the base keyboard
group. In either case, the resulting effective keyboard group is brought
back into range depending upon the value ofjtioeips_wragfield of
the controls structure (see section 10.7.1).

« If a key with anXkbSA ISOLock action (see section 16.1.8) is
pressed while this key is down, the key release of this key has no
effect. Otherwise, the key release cancels the effects of the key press.

« If the XkbSA_ClearLocks bit is set in the flags field, and no keys
are physically depressed when this key is released, the key release also
sets the locked keyboard groupGooupl .

» Key press and key release events have the same effect as for
XkbSA SetGroup ; if no keys are physically depressed when this key
is released, key release events have the following additional effects:

« If the XkbSA LatchTolLock bit is set in thdlagsfield and the
latched keyboard group index is non-zero, the key release adds the
delta applied by the corresponding key press to the locked keyboard
group and subtracts it from the latched keyboard group. The locked
and effective keyboard group are brought back into range according to
the value of thgroups_wrapfield of the controls structure.

» Otherwise, the key press adds the key press delta to the latched key-
board group.

* If the XkbSA_GroupAbsolute is set in thdlagsfield, key press
events set the locked keyboard group to the group specified by the
group_XXXfield. Otherwise, key press events add the group specified
by thegroup_XXXfield to the locked keyboard group. In either case,
the resulting locked and effective keyboard groups are brought back
into range depending upon the value ofgheups_wragfield of the
controls structure

* A key release has no effect.

Theflagsfield is composed of the bitwise inclusive OR of the masks shown in Table 16.5.
A general meaning is given in the table, but the exact meaning depends upon the action

type

Table 16.5 Group Action Flags

Flag

Meaning

XkbSA _ClearLocks

XkbSA LatchTolLock

XkbSA GroupAbsolute

If set and no keys are physically depressed when this key
transition occurs, the server sets the locked keyboard group
to Groupl on a key release.

If set, and the action type $A LatchGroup , the server
locks the action group if it is already latched.

If set, thegroup_XXXfield represents an absolute group
number. Otherwise, it represents a group delta to be added to
the current group to determine the new group number.

February 5, 1996

Library Version 1.0/Document Revision 1.0 145

The X Keyboard Extension 16 Xkb Server Keyboard Mapping

Thegroup_XXXfield represents a signed character. Xkb provides the following macros,
to convert between a signed integer value and a signed character:

int XkbSAGroup (act) /* macro */
XkbAction act; [* action from which to extract group */

XkbSAGroupeturns thegroup_XXXfield of act converted to a signed int.

void XkbSASetGroup(act, grp /* macro */
XkbAction act; [* action from which to set group */
int arp; [* group index to set igroup_ XXX¥/

XkbSASetGroupets thegroup_XXXfield of act from the group indegrp.

Note Despite the fact that the first parameter of these two macros is of type XkbAction,
these macros may only be used with Actions of ¥keGroupAction andXKkbl-
SOAction .

16.1.5 Actions for Moving the Pointer

Actions associated with thékbPtrAction structure move the pointer when keys are
pressed and released:

typedef struct _XkbPtrAction {

unsigned char type; IXKkbSA MovePtr */

unsigned char flags; [* determines type of pointer motion */
unsigned char high_XXX; [* x co-ordinate, high bits*/

unsigned char low_ XXX; [* y co-ordinate, low bits */

unsigned char high_YYY; /* x co-ordinate, high bits */

unsigned char low_YYY; /* y co-ordinate, low bits */

} XkbPtrAction ;

If the MouseKeys control is not enabled (see section 10.5K&yPress andKeyRe-
lease events are treated as though the actiofkidsSA NoAction .

If the MouseKeys control is enabled, a server action of tyfdSA MovePtr instructs

the server to generate core poiriationNotify events rather than the usay-

Press event, and the correspondiigyRelease event disables any mouse keys timers
that were created as a result of handlingdkigSA_MovePtr action.

Thetypefield of theXkbPtrAction structure is alwayXkbSA MovePtr .
Theflagsfield is a bitwise inclusive OR of the masks shown in Table 16.6.
Table 16.6 Pointer Action Types

Action Type Meaning

XkbSA NoAcceleration If not set, and thiMouseKeysAccel control is enabled (see
section 10.5.2), thKeyPress initiates a mouse keys timer
for this key; every time the timer expires, the cursor moves.

XkbSA MoveAbsoluteX If set, the X portion of the structure specifies the new pointer
X coordinate. Otherwise, the X portion is added to the cur-
rent pointer X coordinate to determine the new pointer X
coordinate.

February 5, 1996 Library Version 1.0/Document Revision 1.0 146

The X Keyboard Extension 16 Xkb Server Keyboard Mapping

Table 16.6 Pointer Action Types

Action Type Meaning

XkbSA_ MoveAbsoluteY If set, the Y portion of the structure specifies the new
pointer Y coordinate. Otherwise, the Y portion is added
to the current pointer Y coordinate to determine the new
pointer Y coordinate.

Each of the X and Y co-ordinantes of tidoPtrAction structure is composed of two
signed 16-bit values, that is, the X co-ordinate is composkiglof XXXandlow XXX
and similarly for the Y co-ordinate. Xkb provides the following macros, to convert
between a signed integer and two signed 16-bit valugkhiptrAction structures:

int XkbPtrActionX (act) /* macro */
XkbPtrAction act /* action from which to extract X */

XkbPtrActionXreturns thénigh_XXXandlow_XXXfields ofact converted to a signed int.

int XkbPtrActionY (act) /* macro */

XkbPtrAction act [* action from which to extract Y */
XkbPtrActionYreturns thénigh_YYYandlow_YYYfields ofact converted to a signed int.
void XkbSetPtrActionX (act, X) /* macro */

XkbPtrAction act, /* action in which to set X */

int X; /* new value to set */
XkbSetPtrAction)sets thénigh XXXandlow_XXXfields ofact from the signed integer
valuex.
void XkbSetPtrActionY (act, y) /* macro */

XkbPtrAction act /* action in which to set Y */

int y; /* new value to set */
XkbSetPtrActionXsets thenigh_YYYandlow_YYYfields ofact from the signed integer
valuey.

16.1.6 Actions for Simulating Pointer Button Press and Release

Actions associated with thékbPtrBtnAction structure simulate the press and release
of pointer buttons when keys are pressed and released:

typedef struct _XkbPtrBtnAction {
unsigned char type; XkbSA PtrBtn, XkbSA LockPtrBtn */
unsigned char flags; /* wittype controls the effect on pointer buttons*/
unsigned char count; /* controls number of ButtonPress and ButtonRelease events */
unsigned char button; /* pointer button to simulate */
} XkbPtrBtnAction ;

If the MouseKeys (see section 10.5.1) control is not enabkeyPress andKeyRe-
lease events are treated as though the actiofkid’SA NoAction .

February 5, 1996 Library Version 1.0/Document Revision 1.0 147

The X Keyboard Extension 16 Xkb Server Keyboard Mapping

Thetypefield can have any one of the values shown in Table 16.7.
Table 16.7 Pointer Button Action Types

Type Effect

XkbSA_PtrBin « If XkbSA_UseDfltButton is set in thdlagsfield, the event is gen-
erated for the pointer button specified by tile dflt_btnattribute of
theMouseKeys control (seesection 10.5.)1 Otherwise, the event is
generated for the button specified by b¢tonfield.

« If the mouse button specified for this action is logically down, the key
press and corresponding key release are ignored and have no effect.
Otherwise, a key press causes one or more core pointer button events
instead of the usu#leyPress event. Ifcountis 0, a key press gener-
ates a singl8uttonPress event; ifcountis greater thaf, a key
press generatepuntpairs ofButtonPress andButtonRelease
events.

« If countis 0, a key release generates a core poBtEonRelease
which matches the event generated by the correspoKdiigress ; if
countis non-zero, a key release does not calBdtanRelease
event. A key release never generates akasyRelease event.

XkbSA_LockPUBIN , f the button specified by tHdouseKeys default button obuttonis
not locked, a key press causaBudtonPress event instead of a
KeyPress event and locks the button. If the button is already locked
or if XkbSA LockNoUnlock is set in thdlagsfield, a key press is
ignored and has no effect.

« If the corresponding key press was ignored, and if

XkbSA_LockNoLock is not set in thélagsfield, a key release gener-
ates aButtonRelease event instead of HeyRelease event and
unlocks the specified button. If the corresponding key press locked a
button, the key release is ignored and has no effect.

Theflagsfield is composed of the bitwise inclusive OR of the masks shown in Table 16.8.
A general meaning is given in the table, but the exact meaning depends upon the action

type
Table 16.8 Pointer Button Action Flags

Flag Meaning

XkbSA _UseDfitButton If set, the action uses the pointer button specified by the
mk_dflt_btnattribute of theMouseKeys control (see section
10.5.1). Otherwise, the action uses the pointer button specified by
the buttonfield.

XkbSA _LockNoLock If set, and the action type ¥kbSA_LockPtrBtn , the server
only unlocks the pointer button.

XkbSA_LockNoUnlock If set, and the action type ¥kbSA_ LockPtrBtn , the server

only locks the pointer button.

16.1.7 Actions for Changing the Pointer Button Simulated

Actions associated with thé&bPtrDfitAction structure change thak_dflt_btn
attribute of theMouseKeys control geesection 10.5.1 on page 60):

typedef struct _XkbPtrDfltAction {

unsigned char type; XkbSA_SetPtrDfit */
unsigned char flags; /* controls the pointer button number */
unsigned char affect; XkbSA_AffectDfItBtn */

February 5, 1996 Library Version 1.0/Document Revision 1.0 148

The X Keyboard Extension 16 Xkb Server Keyboard Mapping

char valueXXX; /* new default button member */
} XkbPtrDfltAction ;

If the MouseKeys control is not enabledkeyPress andKeyRelease events are treated
as though the action ¥XKkbSA NoAction . Otherwise, this action changes thie_dflt_btn
attribute of theMouseKeys control.

Thetypefield of theXkbPtrDfitAction structure should always be
XKkbSA_SetPtrDfit

Theflagsfield is composed of the bitwise inclusive OR of the values shown in Table 16.9
(currently there is only one value defined).

Table 16.9 Pointer Default Flags

Flag Meaning

XkbSA _DfltBtnAbsolute If set, thevaluefield represents an absolute pointer button.
Otherwise, thealuefield represents the amount to be added
to the current default button.

Theaffectfield specifies what changes as a result of this action. The only valid value for
theaffectfield is XkbSA_AffectDfitBtn

ThevalueXXXfield is a signed character that represents the new button value for the
mk_dflt_btnattribute of theviouseKeys control (see section 10.5.1). If
XkbSA_DfitBtnAbsolute is set inflags valueXXXspecifies the button to be used; oth-
erwise,valueXXXspecifies the amount to be added to the current default button. In either
case, illegal button choices are wrapped back around into range. Xkb provides the follow-
ing macros, to convert between the integer and signed character vatkbBtibfl-

tAction structures:

int XkbSAPtrDfltValue (act) /* macro */

XkbAction act, /* action from which to extract group */
XkbSAPtrDfltValugeturns thevalueXXXfield of act converted to a signed int.
void XkbSASetPtrDfltValue(act, va) /* macro */

XkbPtrDfltAction act /* action in which to setalueXXXx*/

int val; /* value to set invalue XXX/

XkbSASetPtrDfltValusets thevalueXXXfield of act from val.

16.1.8 Actions for Locking Modifiers and Group

Actions associated with thékbISOAction structure lock modifiers and the group
according to the 1ISO9995 specification.

Operated by itself, th¥kbISOAction is just a caps lock. Operated simultaneously with
another modifier key, it transforms the other key into a locking key. For example, press
ISO_Lock, press and releagmntrol_L, releaseSO_Lock ends up locking th€ontrol
modifier.

The default behavior is to convert:

{Set,Latch}Mods to: LockMods
{Set,Latch}Group to: LockGroup
SetPtrBtn to: LockPtrBtn

February 5, 1996 Library Version 1.0/Document Revision 1.0 149

The X Keyboard Extension 16 Xkb Server Keyboard Mapping

SetControls to: LockControls

Theaffectsfield allows you to turn those effects on or off individually. Set
XkbSA ISONoAffectMods to disable the firsiXkbSA ISONoAffectGroup to disable
the second, and so forth.

typedef struct _XkbISOAction {
unsigned char type; XKbSA ISOLock */
unsigned char flags; /* controls changes to group or modifier state */
unsigned char mask; &ame asnaskfield of a modifier descriptiory
unsigned char real_mods;/* sameraal_moddfield of a modifier descriptiot/
char group_XXX;/* group index or delta group */
unsigned char affect; /* specifies whether to affect mods, group, ptrbtn or controls*/
unsigned char vmodsl; /* derived frarmodsfield of a modifier descriptiory
unsigned char vmods2; /* derived frormodsfield of a modifier descriptioty
} XkbISOAction;

Thetypefield of theXkblSOAction structure should always Bé&bSA 1SOLock .

The interpretation of thitagsfield depends upon whether tKkbSA ISODfitisGroup
is set in thdlagsfield or not.

If the XkbSA_ISODfitisGroup is set in thdlagsfield, the action is used to change the
group state. The remaining valid bits of flagsfield are composed of a bitwise inclusive
OR using the masks shown in Table 16.10.

Table 16.10 1SO Action Flags when XkbSA ISODfltisGroup is Set

Flag Meaning

XkbSA ISODfltiIsGroup If set, the action is used to change the base group state. Must
be set for the remaining bits in this table to carry their inter-
pretations.

A key press sets the base group as specified by the
%rou p_XXXield and thexkbSA_GroupAbsolute bit of
theflagsfield (see section Note). If no other actions are
transformed by th&kbISO_Lock action, a key release
locks the group. Otherwise, a key release clears group
set by the key press.

XkbSA_ GroupAbsolute If set, thegroup_XXXfield represents an absolute group

number. Otherwise, it represents a group delta to be added to
the current group to determine the new group number.

XkbSA ISONoAffectMods If not set, anyXxkbSA SetMods or XkbSA LatchMods
actions that occur simultaneously with XidbSA _ISOLock
action are treated a&bSA LockMod actions instead.

XkbSA ISONoAffectGroup If not set, anyXkbSA_SetGroup or XkbSA LatchGroup
actions that occur simultaneously with ¥idbSA ISOLock
action are treated a&bSA _LockGroup actions instead.

XkbSA ISONoAffectPtr If not set, anyKxkbSA_PtrBtn actions that occur simulta-
neously with thexkbSA_ISOLock action are treated as
XkbSA_ LockPtrBtn actions instead.

XkbSA ISONoAffectCtrls If not set, anyKxkbSA_SetControls actions that occur
simultaneously with th&kbSA_ISOLock action are treated
asXkbSA LockControls actions instead.

February 5, 1996 Library Version 1.0/Document Revision 1.0 150

The X Keyboard Extension 16 Xkb Server Keyboard Mapping

If the XkbSA_ISODfitisGroup is not set in théagsfield, the action is used to change
the modifier state and the remaining valid bits offthgsfield are composed of a bitwise
inclusive OR using the masks shown in Table 16.11.

Table 16.11 ISO Action Flags when XkbSA_ISODfltiIsGroup is Not Set

Flag Meaning

XkbSA _1SODfltIsGroup If not set, action is used to change the base modifier state.
Must not be set for the remaining bits in this table to carry
their interpretations.

A key press sets the action modifiers in the keyboard’s base
modifiers usinghe mask real_modsvmods]and
vmodsZields (see section 16.1.3). Mo other actions are
transformed by th&kbISO_Lock action, a key release
locks the action modifiers. Otherwise, a key release
clears the base modifiers set by the key press.

XkbSA UseModMapMods If set, the action modifiers are determined by the modifiers
bound by the modifier mapping of the key. Otherwise, the
action modifiers are set to the modifiers specified by the
mask real_modsvmodl andvmodZ2fields.

XkbSA LockNoLock If set, the server only unlocks the action modifiers.
XkbSA LockNoUnlock If set, the server only locks the action modifiers.
XkbSA ISONoAffectMods If not set, anyKxkbSA_SetMods or XkbSA LatchMods

actions that occur simultaneously with XidbSA 1SOLock
action are treated a8&bSA _LockMod actions instead.

XkbSA_ISONoAffectGroup If not set, anyXkbSA_SetGroup or XkbSA _LatchGroup
actions that occur simultaneously with XidbSA 1SOLock
action are treated a&bSA LockGroup actions instead.

XkbSA _ISONoAffectPtr If not set, anyxkbSA_PtrBtn actions that occur simulta-
neously with thexkbSA_ISOLock action are treated as
XkbSA LockPtrBtn actions instead.

XkbSA _ISONoAffectCtrls If not set, anyKxkbSA_SetControls actions that occur
simultaneously with th¥kbSA_ISOLock action are treated
asXkbSA LockControls actions instead.

Thegroup_XXXfield represents a signed character. Xkb provides macros to convert
between a signed integer value and a signed character as shown in section Note.

Themaskreal_modsvmods] andvmodsZields represent the components of an Xkb
modifier description (see section 7.2). While thaskandreal _moddields correspond

directly to themaskandreal moddields of an Xkb modifier description, thvenodsland
vmodsZields are combined to correspond to vineodsfield of an Xkb modifier descrip-

tion. Xkb provides macros to convert between the two formats as shown in section 16.1.3.

Theaffectfield is composed of a bitwise inclusive OR using the masks shown in Table
16.11.

Table 16.12 ISO Action affect Field Values

Affect Meaning

XkbSA ISODNoAffectMods If XkbSA ISONoAffectMods is not set, an$$A_SetMods
or SA_LatchMods actions occurring simultaneously with
the XkbISOAction are treated aSA LockMods instead.

February 5, 1996 Library Version 1.0/Document Revision 1.0 151

The X Keyboard Extension 16 Xkb Server Keyboard Mapping

Table 16.12 ISO Action affect Field Values

Affect Meaning

XkbSA ISONoAffectGroup If XkbSA ISONoAffectGroup is not set, any
SA_SetGroup or SA_LatchGroup actions occurring
simultaneously with thXkbISOAction are treated as
SA LockGroup instead.

XkbSA _ISONoAffectPtr If XkbSA_ISONoAffectPtr is not set, anpA_PtrBtn
actions occurring simultaneously with tKkbISOAction
are treated aSA_LockPtrBtn instead.

XkbSA_ISONoAffectCtrls If XkbSA_ISONoAffectCtrls is not set, any
SA_SetControls actions occurring simultaneously with
the XkbISOAction are treated aSA LockControls
instead.

16.1.9 Actions for Changing the Active Screen

Actions associated with thékbSwitchScreen action structure change the active screen
on a multi-screen display:

Note This action is optional. Servers are free to ignore the action or any of its flags if they
do not support the requested behavior. If the action is ignored, it behaves like
XkbSA NoAction . Otherwise, key press and key release events do not generate an

event.
typedef struct _XkbSwitchScreenAction {
unsigned char type; XkbSA_ SwitchScreen */
unsigned char flags; [* controls screen switching */
char screenXXX; /* screen number or delta */

} XkbSwitchScreenAction

Thetypefield of theXkbSwitchScreenAction structure should always be
XkbSA SwitchScreen

Theflagsfield is composed of the bitwise inclusive OR of the masks shown in Table

16.13.
Table 16.13 Switch Screen Action Flags
Flag Meaning
XkbSA _SwitchAbsolute If set, thescreenXXXield represents the index of the

new screen. Otherwise, it represents an offset from the
current screen to the new screen.

XkbSA SwitchApplication If not set, the action should switch to another screen on
the same server. Otherwise, it should switch to another X
server or application that shares the same physical dis-

play.

ThescreenXXXield is a signed character value that represents either the relative or abso-
lute screen index, depending upon the state okKkb&A SwitchAbsolute bit in the
flagsfield. Xkb provides the following macros, to convert between the integer and signed

character value for screen numberXlkbSwitchScreenAction structures:
int XkbSAScreer(act) /* macro */
XkbSwitchScreenAction act /* action from which to extract screen */

XkbSAScreereturns thescreenXXXield of act converted to a signed int.

February 5, 1996 Library Version 1.0/Document Revision 1.0 152

The X Keyboard Extension 16 Xkb Server Keyboard Mapping

void XkbSASetScreelfact, 9 /* macro */
XkbSwitchScreenAction act /* action in which to sescreenXXX/
int S /* value to set irscreenXXX/

XkbSASetScrearts thescreenXXXield of actfrom s.

16.1.10Actions for Changing Boolean Controls State

Actions associated with thé&kbCtrisAction structure change the state of the boolean
controls (see section 10.1):

typedef struct _XkbCtrlsAction {

unsigned char type; XkbSA_SetControls, XkbSA_LockControls */
unsigned char flags; [* wittype controls enabling and disabling of controls */
unsigned char ctrls3; ftrlsO throughctris3represent the boolean contrals
unsigned char ctrls2; ftrlsO throughctris3 represent the boolean contrals
unsigned char ctrlsl; /ftrlsOthroughctris3represent the boolean contrals
unsigned char ctrlsO; /trlsO throughctris3represent the boolean contrals

} XkbCtrisAction ;
Thetypefield can have any one of the values shown in Table 16.14.
Table 16.14 Controls Action Types
Type Effect

XkbSA_SetControls « A key press enables any boolean controls specified ictrise
fields that were not already enabled at the time of the key press.
* A key release disables any controls enabled by the key press.

 This action can caus¢kbControlsNotify events (see sec-
tion 10.1).
XkbSA_LockControls o If the XkbSA LockNoLock bit is not set in théagsfield, a

key press enables any controls specified ircthg fields that
were not already enabled at the time of the key press.

* If the XkbSA _LockNoUnlock bit is not set in thagsfield, a
key release disables any controls specified ircthefields
that were not already disabled at the time of the key press.

 This action can causé&bControlsNotify events (see sec-

tion 10.1).
Theflagsfield is composed of the bitwise inclusive OR of the masks shown in Table
16.15.

Table 16.15 Control Action Flags

Flag Meaning
XkbSA LockNoLock If set, and the action type #¥kbSA_LockControls | the

server only disables controls.
XkbSA_LockNoUnlock If set, and the action type #kbSA_LockControls |, the

server only enables controls.

The XkbSA SetControls action implements a key which enables a boolean control

when pressed, and disables it when releasedXHib®A LockControls action is used

to implement a key which toggles the state of a boolean control each time it is pressed and
released. Th&kbSA LockNoLock andXkbSA_LockNoUnlock flags allow modifying

the toggling behavior to only unlock or only lock the boolean control.

February 5, 1996 Library Version 1.0/Document Revision 1.0 153

The X Keyboard Extension 16 Xkb Server Keyboard Mapping

ThectrlsO, ctrlsl, ctrls2, andctris3 fields represent the boolean controls in the
enabled_ctridield of the controls structurade section 10)1Xkb provides the following
macros, to convert between the two formats:

unsigned inXkbActionCtrls (act) /* macro */
XkbCtrisAction act /* action from which to extract controls */

XkbActionCtrlsreturns thetrls fields ofact converted to an unsigned int.

void XkbSAActionSetCtris(act, ctrl9 /* macro */
XkbCtrisAction act; [* action in which to set ctrlsO-ctrls3 */
unsigned int ctrls; /* value to set in ctrlsO-ctrls3 */

XkbSAActionSetCtrisets thestrlsO throughctrls3 fields ofact from ctrls.

16.1.11Actions for Generating Messages

Actions associated with thkbMessageAction structure generatékbActionMes-
sage events:

#define XkbActionMessagelLength 6
typedef struct _XkbMessageAction {

unsigned char type; XkbSA ActionMessage */
unsigned char flags; [* controls event generation via key presses and releases */
unsigned char message[XkbActionMessagelLength]; /* message */

} XkbMessageAction

Thetypefield of theXkbMessageAction structure should always be
XkbSA_ActionMessage

Theflagsfield is composed of the bitwise inclusive OR of the masks shown in Table

16.16.
Table 16.16 Message Action Flags
Flag Meaning
XkbSA_ MessageOnPress If set, key press events generatexéibActionMes-

sage event which reports the keycode, event type, and
contents of thenessagéield.

XkbSA MessageOnRelease If set, key release events generatX@pActionMes-
sage event which reports the keycode, event type, and
contents of thenessagédield.

XkbSA MessageGenKeyEvent If set, key press and key release events geni€egte
Press andKeyRelease events, regardless of whether
they generatXkbActionMessage events.

Themessagdield is an array okKkbActionMessagelength unsigned characters, and
may be set to anything the keymap designer wishes.

Detecting Key Action Messages

To receivexXkbActionMessage events by calling eithetkbSelectEventsr XkbSelect-
EventDetaildsee section 4.3).

To receivexXkbActionMessage events under all possible conditions, e&bSelect-
Eventsand pasXkbActionMessageMask in bothbits_to_changeandvalues_for_bits

February 5, 1996 Library Version 1.0/Document Revision 1.0 154

The X Keyboard Extension 16 Xkb Server Keyboard Mapping

The XkbActionMessage event has no event details. However, you canddiSelect-
EventDetailsusingXkbActionMessage as theevent_typend specifyingKkbAllAc-
tionMessageMask in bits_to_changandvalues_for_bitsThis has the same effect as a
call to XkbSelectEvents

The structure for th&kbActionMessage event is defined as follows:
typedef struct _XkbActionMessage {

int type; I* Xkb extension base event code */

unsigned long serial; [* X server serial number for event */

Bool send_event; [Arue => synthetically generated */

Display * display; [* server connection where event generated */
Time time; [* server time when event generated */

int xkb_type; [*XkbActionMessage */

int device; /* Xkb device id, will not b&XkbUseCoreKbd */
KeyCode keycode; * keycode of key triggering event */

Bool press; [*True => key pressk-alse => release */

Bool key event follows; /True => KeyPress/KeyRelease follows */
char message[XkbActionMessageLength+1]; /* message text */

} XkbActionMessageEvent

Thekeycodads the keycode of the key that was pressed or releasegrdssdield speci-
fies whether the event was the result of a key press or key release.

Thekey_event_followspecifies whether ldeyPress (if pressis True) or KeyRelease

(if pressis False) event is also sent to the client. As with all other Xkb evetdsAc-
tionMessageEvent s are delivered to all clients requesting them, regardless of the cur-
rent keyboard focus. However, tkeyPress orKeyRelease event which conditionally
follows anXkbActionMessageEvent is only sent to the client selected by the current
keyboard focuskey event_followis True only for the client which is actually sent the
following KeyPress or KeyRelease event.

Themessagdield is set to the message specified in the action, and is guaranteed to be
NULL-terminated; the Xkb extension forcebldLL into messageXkbActionMessage-
Length].

16.1.12Actions for Generating a Different Keycode

Actions associated with thékbRedirectKeyAction structure generatéeyPress and
KeyRelease events containing a keycode different from the key that was pressed or
released:

typedef struct_XkbRedirectKeyAction {
unsigned char type; IXKbSA_Redirectkey */
unsigned char new_key; /* keycode to be put in event */
unsigned char mods_mask; /* mask of real mods to be reset */
unsigned char mods; /* mask of real mods to take values from */
unsigned char vmods_maskO0;/* first half of mask of virtual mods to be reset */
unsigned char vmods_mask1;/* other half of mask of virtual mods to be reset */
unsigned char vmodsO; [* first half of mask of virtual mods to take values from */
unsigned char vmodsl; [* other half of mask of virtual mods to take values from */
} XkbRedirectKeyAction;

February 5, 1996 Library Version 1.0/Document Revision 1.0 155

The X Keyboard Extension 16 Xkb Server Keyboard Mapping

Thetypefield for theXkbRedirectKeyAction structure should always be
XkbSA Redirectkey

Key presses causekayPress event for the key specified by thew_keyield instead of

the actual key. The state reported in this event reports the current effective modifiers
changed as follows: any real modifiers selected byrtbés_maskeld are set to corre-
sponding values from theodsfield. Any real modifiers bound to the virtual modifiers
specified by theemods_mask@ndvmods_maskfields are either set or cleared, depend-
ing upon the corresponding values in Win@odsCGandvmodsIfields. If the real and virtual
modifier definitions specify conflicting values for a single modifier, the real modifier def-
inition has priority.

Key releases causekayRelease event for the key specified by thew_keyfield
instead of the actual key. The state for this event consists of the effective keyboard modi-
fiers at the time of the release, changed as described above.

The XkbSA Redirectkey action normally redirects to another key on the same device

as the key that caused the event, unless that device does not belong to the input extension
KeyClass , in which case this action causes an event on the core keyboard device. (The
input extension categorizes devices by breaking them into classes. Keyboards, and other
input devices with keys, are classifiedkaes/Class devices by the input extension.)

Thevmods_mask@ndvmods_maskfields actually represent onenods_maskalue, as
described in Chapter 7. Xkb provides the following macros, to convert between the two
formats:

unsigned inXkbSARedirectVYModsMask(act) /* macro */
XkbRedirectKeyAction act, /* action from which to extract vmods */

XkbSARedirectVModsMasgturns thesrmods_maskBndvmods_maskfields ofact con-
verted to an unsigned int.

void XkbSARedirectSetVModsMaskact, vim /* macro */

XkbRedirectkeyAction act, /* action in which to set vmods */

unsigned int v /* new value for virtual modifier mask */
XkbSARedirectSetVModsMasits theemods__mask@ndvmods_maskfields ofactfrom
vm

Similarly, thevmodsGandvmodsIfields actually represent onenodsvalue, as described
in Chapter 7. To convert between the two formats, Xkb provides the following conve-
nience macros:

unsigned inXkbSARedirectVMods(act) /* macro */
XkbRedirectkeyAction act, /* action from which to extract vmods */

XkbSARedirectVModsMas&turns thermodsOandvmodsIfields ofact converted to
an unsigned int.

void XkbSARedirectSetVModgact, vn) /* macro */
XkbRedirectkKeyAction act, /* action in which to set vmods */
unsigned int v, /* new value for virtual modifiers */

XkbSARedirectSetVModsMasits thermodsOandvmodslof act from v.

February 5, 1996 Library Version 1.0/Document Revision 1.0 156

The X Keyboard Extension 16 Xkb Server Keyboard Mapping

16.1.13Actions for Generating DeviceButtonPress and DeviceButtonRelease

Actions associated witkkbDeviceBtnAction structures generaf@eviceButton-
Press andDeviceButtonRelease events instead of normideyPress andKeyRe-
lease events:

typedef struct _XkbDeviceBtnAction {
unsigned char type; XKbSA DeviceBtn, XkbSA LockDeviceBtn */
unsigned char flags; I* wittype specifies locking or unlocking */
unsigned char count; /* controls number of DeviceButtonPress and Release events */
unsigned char button; /* index of button device*/
unsigned char device; /* device id of an X input extension device */
} XkbDeviceBtnAction;

Thetypefield can have any one of the values shown in Table 16.17.
Table 16.17 Device Button Action Types

Type Effect

XkbSA_DeviceBin « If the button specified by this action is logically down, the key
press and corresponding release are ignored and have no effect.
If the device or button specified by this action are illegal, this
action behaves likEkbSA _NoAction .

» Otherwise, key presses cause one or more input extension
device events instead of the usual key press event. ¢bthe
field is 0, a key press generates a silgeiceButton-

Press event. If count is greater than 0, a key press event gen-
eratecountpairs ofDeviceButtonPress and
DeviceButtonRelease events.

* If countis 0, a key release generates an input extemxon
ceButtonRelease event that matches the event generated
by the corresponding key pressctfuntis non-zero, a key
release does not causPeviceButtonRelease event. Key
releases never caukeyRelease events.

XkbSA_LockDeviceBtn « If the device or button specified by this action are illegal, this
action behaves likEkbSA NoAction .

» Otherwise, if the specified button is not locked and the
XkbSA LockNoLock bit is not set in th8agsfield, a key
press generates an input extenddewiceButtonPress
event instead of KeyPress event and locks the button. If the
button is already locked orXkbSA LockNoLock bit is setin
theflagsfield, the key press is ignored and has no effect.

* If the corresponding key press was ignored, and if the
XkbSA LockNoUnlock bit is not set in thélagsfield, a key
release generates an input extenglemiceButtonRe-
lease eventinstead of HeyRelease event and unlocks the
button. If the corresponding key press locked a button, the key
release is ignored and has no effect.

Theflagsfield is composed of the bitwise inclusive OR of the masks shown in Table

16.18.
Table 16.18 Device Button Action Flags
Flag Meaning
XkbSA LockNoLock If set, and the action type ¥kbSA LockDeviceBtn , the

server only unlocks the button.

February 5, 1996 Library Version 1.0/Document Revision 1.0 157

The X Keyboard Extension 16 Xkb Server Keyboard Mapping

Table 16.18 Device Button Action Flags

Flag Meaning

XkbSA _LockNoUnlock If set, and the action type ¥kbSA LockDeviceBtn , the
server only locks the button.

16.1.14Actions for Simulating Events from Device Valuators

A valuator manipulates a range of values for some entity, like a mouse axis, a slider or a
dial. Actions associated witkkbDeviceValuatorAction structures are used to simu-
late events from one or two input extension device valuators.

typedef struct _XkbDeviceValuatorAction {
unsigned char type; RkbSA DeviceValuator */
unsigned char device; [* device id */
unsigned char vl what; /* determines how valuator is to behave for valuator 1 */
unsigned char vl _ndx; /* specifies a real valuator */
unsigned char ~ v1_value; /* the value for valuator 1 */
unsigned char v2_what; /* determines how valuator is to behave for valuator 2 */
unsigned char v2_ndx; /* specifies a real valuator */
unsigned char v2_value; /* the value for valuator 1 */
} XkbDeviceValuatorAction;

If deviceis illegal or if neithenv1l_ndxnorv2_ndxspecifies a legal valuator, this action
behaves likeXkbSA NoAction .

The low four bits ov1_whatandv2_whatspecify the corresponding scale value (denoted
valkn>Scale in Table 16.1Y, if needed. The high four bits e1_whatandv2_whatspecify
the operation to perform to set the valueke high four bits o1 _whatandv2_whatcan
have the values shown in Table 16.17; the usalsh>Scale is shown in that table

also.

Table 16.19 Device Valuator v<n>_what High Bits Values
Value of high bits Effect
XkbSA IgnoreVal No action
XkbSA SetValMin v<n>_valueis set to its minimum legal value.
XkbSA_SetValCenter v<n>_valueis centered (to (max-min)/2).
XkbSA SetValMax v<n>_valueis set to its maximum legal value.
XkbSA_SetValRelative v<n>_ value* (2Va<n>Scal§ is 5qded tw<n> value
XkbSA_SetValAbsolute v<n>_valueis set to ($2I<n>Scalg

lllegal values foiXkbSA_SetValRelative or XkbSA SetValAbsolute are clamped into
range. Note that all of these possibilities are legal for absolute valuators. For relative valuators,
only XkbSA_SetValRelative is permitted. Part of the input extension description of a device
is the range of legal values for all absolute valuators, whence the maximum and minimum legal
values shown iTable 16.17

The following two masks are provided as a convenience to select either portion of
vl whatorv2_what

#define XkbSA_ValOpMask (Ox70)
#define XkbSA_ValScaleMask (0x07)

February 5, 1996 Library Version 1.0/Document Revision 1.0 158

The X Keyboard Extension 16 Xkb Server Keyboard Mapping

vl ndxandv2_ndxspecify valuators that actually exists. For example, most mice have
two valuators (x and y axes) so the only legal values for a mouse would be 0 and 1. For a
dial box with eight dials, any value in the range 0..7 would be correct.

16.1.150btaining Key Actions for Keys from the Server

To update the actions (thkey_actsarray) for a subset of the keys in a keyboard descrip-
tion, callXkbGetKeyActions

StatusXkbGetKeyActions(dpy;, first, num xkb)

Display * dpy; [* connection to X server */

unsigned int first; * keycode of first key of interest */

unsigned int numn /* number of keys desired */

XkbDescPtr xkhby * pointer to keyboard description where result is stored */

XkbGetKeyActionsends a request to the server to obtain the actionsifiokeys on the
keyboard starting with kefyrst. It waits for a reply, and returns the actions in the
server>key actdield of xkh. If successfulXkbGetKeyActioneeturnsSuccess . Thexkb
parameter must be a pointer to a valid Xkb keyboard description.

If the servermap in thexkb parameter has not been allocatéklyGetKeyActionallocates
and initializes it before obtaining the actions.

If the server does not have a compatible version of Xkb, or the Xkb extension has not been
properly initialized XkbGetKeyActionseturnsBadAccess . If numis less than 1 or

greater tharxkbMaxKeyCount , XkbGetKeyActionseturnsBadValue . If any allocation

errors occurXkbGetKeyActioneeturnsBadAlloc

16.1.16Changing the Number of Actions Bound to a Key
To change the number of actions bound to a keyXkbResizeKeyAction
XkbAction *XkbResizeKeyActiongxkb, key needell

XkbDescRec * xkby /* keyboard description to change */
int key, [* keycode of key to change */
int needed /* new number of actions required */

Thexkbparameter points to the keyboard description containingeywhose number of
actions is to be changed. Tkeyparameter is the keycode of the key to change, and
neededspecifies the new number of actions required for the key.

XkbResizeKeyActiomsserves the space needed for the actions and returns a pointer to the
beginning of the new array that holds the actions. It can changettheum_actsand
size_actdields ofxkb->serverif it is necessary to reallocate thetsarray.

If neededs greater than the current number of keysyms for theXddyResizeKeyActions
initializes all new actions in the array NmAction

Since the number of actions needed by a key is normally computed as width * number of
groups, anKkbResizeKeyActiommoes not modify either the width or number of groups

for the key, a discrepancy exists upon return fiihResizeKeyActiongetween the

space allocated for the actions and the number required. The unused entries in the list of
actions returned b}kbResizeKeyActiorse not preserved across future calls to any of

the map editing functions, so you must update the key actions (which updates the width

February 5, 1996 Library Version 1.0/Document Revision 1.0 159

The X Keyboard Extension 16 Xkb Server Keyboard Mapping

16.2

and number of groups for the key) before calling another allocator function. A call to
XkbChangeTypesOfKeypdates these.

If any allocation errors occur while resizing the number of actions bound to the key,
XkbResizeKeyActiometurnsNULL

Note A change to the number of actions bound to a key should be accompanied by a change
in the number of symbols bound to a key. Refer to section 15.3.7 on page 138 for more
information on changing the number of symbols bound to a key.

Key Behavior

Key behavior refers to the demeanor of a key. For example, the expected behavior of the
CapsLock key is that it logically locks when pressed, and then logically unlocks when
pressed again.

16.2.1 Radio Groups

Keys that belong to the same radio group havexXkh&B_RadioGroup type in thetype

field and the radio group index specified in taafield in thexXkbBehavior structure.

If the radio group has a name in KikbNamesRec structure, the radio group index is the
index into theadio_grouparray in thexkbNamesRec structure. A radio group key when
pressed stays logically down until another key in the radio group is pressed, when the first
key becomes logically up and the new key becomes logically down. Setting the
XkbKB_RGAllowNone bit in the behavior for all of the keys of the radio group means that
pressing the logically-down member of the radio group causes it to logically release, in
which case none of the keys of the radio group would be logically down. If
XkbKB_RGAllowNone is not set, there is no way to release the logically-down member of
the group.

The low five bits of thelatafield of theXkbBehavior structure are the group number,
the high three bits are flags. The only flag currently defined is:

#define XkbRG_AllowNone 0x80

16.2.2 The XkbBehavior Structure

Thebehaviorsfield of the server map is an arrayX¥oBehavior structures, indexed by
keycode, and contains the behavior for each key XkbhBehavior structure is defined
as follows:

typedef struct _XkbBehavior {
unsigned char type; I* behavior type + optiokgbKB_Permanent bit */
unsigned char data;

} XkbBehavior;

Thetypefield specifies the Xkb behavior, and the value ofdhgfield depends upon the
type Xkb supports the key behaviors shown in Table 16.20.

Table 16.20 Key Behaviors

Type Effect
XkbKB_Default Press and release events are processed normallgiaidféeld is unused.

February 5, 1996 Library Version 1.0/Document Revision 1.0 160

The X Keyboard Extension 16 Xkb Server Keyboard Mapping

Table 16.20 Key Behaviors

Type Effect

XkbKB_Lock If a key is logically up (that is, the corresponding bit of the core key map
is cleared) when it is pressed, the key press is processed normally and the
corresponding release is ignored. If the key is logically down when
pressed, the key press is ignored but the corresponding release is pro-
cessed normally. Thaatafield is unused.

XkbKB_RadioGroup If another member of the radio group is logically down (all members of
the radio group have the same index, specifiethig) when a key is
pressed, the server synthesizes a key release for the member that is logi-
cally down and then processes the new key press event normally.

If the key itself is logically down when pressed, the key press event is
ignored, but the processing of the corresponding key release depends on
the value of th&Xkb_RGAllowNone bit in flags If it is set, the key

release is processed normally; otherwise the key release is also ignored.

All other key release events are ignored.

XkbKB_Overlayl If the Overlayl control is enabled (see section 10d8tais interpreted
as a keycode, and events from this key are reported as if they came from
datas keycode. Otherwise, press and release events are processed nor-
mally.

XkbKB_Overlay2 If the Overlay2 control is enabled (see section 10d8tais interpreted
as a keycode, and events from this key are reported as if they came from
datas keycode. Otherwise, press and release events are processed nor-
mally.

Xkb also provides the maskkbKB_Permanent , to specify whether the key behavior

type should be simulated by Xkb, or if the key behavior describes an unalterable physical,
electrical, or software aspect of the keyboard. IfXkeKB_Permanent bit is not set in
thetypefield, Xkb simulates the behavior in software. Otherwise, Xkb relies upon the
keyboard to implement the behavior.

16.2.3 Obtaining Key Behaviors for Keys from the Server

To obtain the behaviors (tlhhehaviorsarray) for a subset of the keys in a keyboard
description from the server, uS&bGetKeyBehaviors

StatusXkbGetKeyBehaviors(dpy; first, num xkb)

Display * dpy, [* connection to server */

unsigned int first; /* keycode of first key to get */

unsigned int num /* number of keys for which behaviors are desired */
XkbDescPtr xkby /* Xkb description to contain the result */

XkbGetKeyBehaviorgends a request to the server to obtain the behaviorsrfdeeys on
the keyboard starting with the key whose keycodess It waits for a reply, and returns
the behaviors in theerver>behaviorsfield of xkh. If successfulXkbGetKeyBehaviors
returnsSuccess .

If the servermap in thexkb parameter has not been allocateklhyGetKeyBehaviorallo-
cates and initializes it before obtaining the actions.

If the server does not have a compatible version of Xkb, or the Xkb extension has not been
properly initialized XkbGetKeyBehavioneturnsBadAccess . If numis less than 1 or

greater tharxkbMaxKeyCount , XkbGetKeyBehavioneturnsBadValue . If any alloca-

tion errors occurXkbGetKeyBehavioneturnsBadAlloc

February 5, 1996 Library Version 1.0/Document Revision 1.0 161

The X Keyboard Extension 16 Xkb Server Keyboard Mapping

16.3 Explicit Components—Avoiding Automatic Remapping by the Server

Whenever a client remaps the keyboard using core protocol requests, Xkb examines the
map to determine likely default values for the components that cannot be specified using
the core protocol (See section 17.1.2 for more information on how Xkb chooses the
default values).

This automatic remapping might replace definitions explicitly requested by an application,
so the Xkb keyboard description defines an explicit components mask for each key. Any
aspects of the automatic remapping which are listed in the explicit components mask for a
key are not changed by the automatic keyboard mapping.

The explicit components masks are held inekelicitfield of the server map, which is an
array indexed by keycode. Each entry in this array is a mask that is a bitwise inclusive OR
of the values shown in Table 16.21.

Table 16.21 Explicit Component Masks

Bit in Explicit Mask ~ Value Protects Against

ExplicitkeyTypel (1<<0) Automatic determination of the key type associated with
Groupl.

ExplicitkeyType2 (1<<1) Automatic determination of the key type associated with
Group2.

ExplicitkeyType3 (1<<2) Automatic determination of the key type associated with
Groups3.

ExplicitkeyTyped4 (1<<3) Automatic determination of the key type associated with
Group4.

Explicitinterpret (1<<4) Application of any of the fields of a symbol interpretation
to the key in question.

ExplicitAutoRepeat (1<<5) Automatic determination of auto-repeat status for the key,
as specified in a symbol interpretation.

ExplicitBehavior (1<<6) Automatic assignment of thékbKB_Lock behavior to the
key, if theXkbSI_LockingKey flag is set in a symbol
interpretation.

ExplicitYModMap (1<<7) Automatic determination of the virtual modifier map for

the key based on the actions assigned to the key and the
symbol interpretations which match the key.

16.3.1 Obtaining Explicit Components for Keys from the Server

To obtain the explicit components (teeplicit array) for a subset of the keys in a key-
board description, usékbGetKeyExplicitComponents

StatusXkbGetKeyExplicitComponents(dpy, first, num xkb

Display * dpy, [* connection to server */

unsigned int first; /* keycode of first key to fetch */

unsigned int numn /* number of keys for which to get explicit info */
XkbDescPtr xkby /* Xkb description in which to put results */

XkbGetKeyExplicitComponergends a request to the server to obtain the explicit compo-
nents fomumkeys on the keyboard starting with Kegt. It waits for a reply, and returns
the explicit components in tleerver>explicit array ofxkh If successfulXkbGetKeyEx-
plicitComponentseturnsSuccess . Thexkb parameter must be a pointer to a valid Xkb
keyboard description.

February 5, 1996 Library Version 1.0/Document Revision 1.0 162

The X Keyboard Extension 16 Xkb Server Keyboard Mapping

16.4

If the servermap in thexkb parameter has not been allocateklyGetKeyExplicitCompo-
nentsallocates and initializes it before obtaining the actions.

If the server does not have a compatible version of Xkb, or the Xkb extension has not been
properly initialized XkbGetKeyExplicitComponentsturnsBadMatch . If numis less
than 1 or greater thaxkbMaxKeyCount , XkbGetKeyExplicitComponentsturnsBad-
Value . If any allocation errors occuxkbGetKeyExplicitComponentsturnsBadAlloc

Virtual Modifier Mapping

Thevmodsmember of the server map is a fixed-length array contaikbiumVir-

tualMods entries. Each entry corresponds to a virtual modifier and provides the binding
of the virtual modifier to the real modifier bits. Each entry invimedsarray is a bitwise
inclusive OR of the legal modifier masks:

ShiftMask
LockMask
ControlMask
Mod1Mask
Mod2Mask
Mod3Mask
Mod4Mask
Mod5Mask

Thevmodmapmember of the server map is similar to thedmaparray of the client map

(see section 15.4), but is used to define the virtual modifier mapping for each key. Like the
modmapmember, it is indexed by keycode, and each entry is a mask representing the vir-
tual modifiers bound to the corresponding key:

» Each of the bits in amodmapentry represents an index into treodsmember. That
is, bit 0 of avmodmayentry refers to index 0 of thenodsarray, bit 1 refers to index 1,
and so on.

« Ifabitis setin themodmagentry for a key, that key is bound to the corresponding vir-
tual modifier in thevmodsarray.

Thevmodmapandvmodsmembers of the server map are the “master” virtual modifier
definitions. Xkb automatically propagates any changes to these fields to all other fields
that use virtual modifier mappings.

February 5, 1996 Library Version 1.0/Document Revision 1.0 163

The X Keyboard Extension 16 Xkb Server Keyboard Mapping

The overall relationship of fields dealing with virtual modifiers in an Xkb keyboard
description are shown in Figure 16.2.

KeyCode
:
> |
|
vmods|[0] [,
Define real dsf1 g J_H'
vmods
modifiers bound :’ o |
to virtual | vmods[2] _ |
modifier | unsigned short
I (one per key) |
| Defines virtual modifiejs
| vmods[15] for each key. |
I
| vmodmap | — |
server ! |
| XkbServerMapRec |
| I
I
names ittt >
I
| vmods|[0]
XkbDescRec > vmods[1]
vmods|[2]
vmods[15]
XkbNamesRec

Figure 16.2 Virtual Modifier Relationships

16.4.1 Obtaining Virtual Modifier Bindings from the Server

To obtain a subset of the virtual modifier bindings {thedsarray) in a keyboard
description, usXkbGetVirtualMods

StatusXkbGetVirtualMods (dpy which xkb

Display * dpy, [* connection to server */
unsigned int which /* mask indicating virtual modifier bindings to get */
XkbDescPtr xkby /* Xkb description where results will be placed */

XkbGetVirtualModsends a request to the server to obtaiwthedsentries for the virtual
modifiers specified in the maskhich, and waits for a reply. See section 7.1 on page 31
for a description of how to determine the virtual modifier mask. For each bitwhtah
XkbGetVirtualModsupdates the corresponding virtual modifier definition in the
server->vmodsrray ofxkb Thexkbparameter must be a pointer to a valid Xkb keyboard
description. If successfukkbGetVirtualModseturnsSuccess .

If the servermap has not been allocated in k& parameterXkbGetVirtualModsllo-
cates and initializes it before obtaining the virtual modifier bindings.

February 5, 1996 Library Version 1.0/Document Revision 1.0 164

The X Keyboard Extension 16 Xkb Server Keyboard Mapping

If the server does not have a compatible version of Xkb, or the Xkb extension has not been
properly initialized XkbGetVirtualModseturnsBadMatch . Any errors in allocation
causexXkbGetVirtualModgo returnBadAlloc

16.4.2 Obtaining Per-Key Virtual Modifier Mappings from the Server

To obtain the virtual modifier map (tkenodmaparray) for a subset of the keys in a key-
board description, usékbGetKeyVirtualModMap

StatusXkbGetKeyVirtualModMap (dpy; first, num xkb)

Display * dpy, [* connection to server */

unsigned int first; /* keycode of first key to fetch */

unsigned int numn [* # keys for which virtual mod maps are desired */
XkbDescPtr xkhby /* Xkb description where results will be placed */

XkbGetKeyVirutalModmagends a request to the server to obtain the virtual modifier
mappings fonumkeys on the keyboard starting with Kawt. It waits for a reply, and
returns the virtual modifier mappings in therver>vmodmaparray ofxkb. If successful,
XkbGetKeyVirtualModMapeturnsSuccess . Thexkb parameter must be a pointer to a
valid Xkb keyboard description

If the servermap in thexkb parameter has not been allocatékhGetKeyVirtualModMap
allocates and initializes it before obtaining the virtual modifier mappings.

If the server does not have a compatible version of Xkb, or the Xkb extension has not been
properly initialized XkbGetKeyVirtualModMapeturnsBadMatch . If numis less than 1

or greater thaixXkbMaxKeyCount , XkbGetKeyVirtualModMapeturnsBadValue . If any
allocation errors occukkbGetKeyVirtualModMapeturnsBadAlloc

February 5, 1996 Library Version 1.0/Document Revision 1.0 165

The X Keyboard Extension 17 The Xkb Compatibility Map

17 The Xkb Compatibility Map

As shown in the diagram below, the X server is normally dealing with more than one cli-
ent, each of which may be receiving events from the keyboard, and each of which may
issue requests to modify the keyboard in some manner. Each client may be either
Xkb-unaware, Xkb-capable, or Xkb-aware. The server itself may be either Xkb-aware or
Xkb-unaware. If the server is Xkb-unaware, Xkb state and keyboard mappings are not
involved in any manner, and Xkb-aware clients may not issue Xkb requests to the server.
If the server is Xkb-aware, the server must be able to deliver events and accept requests in
which the keyboard state and mapping are compatible with the mode in which the client is
operating. Consequently, for some situations, conversions must be made between Xkb
state / keyboard mappings and core protocol state / keyboard mappings, and vice-versa.

Xkb-aware
Server
Maintains Xkb State and Mapping,
core kb mapping, but not core kb stat

Keycode

| Keyboara | ———

\1%

‘ Core protocol

A Xkb| Xkb protocol
g.\\ config
mapping
config kb Xkb
mapping Xkb
kb
mapping
Xkb .
config ‘\c:flg
state state¢
Y
Xkb-unaware Xkb-capable Xkb-aware
Client Client Client
Core kb Xlib Xkb-aware Xlib Xkb-aware Xlib

Xkb-unaware App

Xkb-unaware App

Xkb-aware App

Figure 17.1 Server Interaction with Types of Clients

In addition to these situations involving a single server, there are cases where a client
which deals with multiple servers may need to configure keyboards on different servers to
be similar and the different servers may not all be Xkb-aware. Finally, a client may be
dealing with descriptions of keyboards (files, etc.) which are based on core protocol, and
therefore may need to be able to map these descriptions to Xkb descriptions.

An Xkb-aware server maintains keyboard state and mapping as an Xkb keyboard state and
an Xkb keyboard mapping, plus a compatibility map used to convert from Xkb compo-
nents to core components and vice-versa. In addition, the server also maintains a core key-
board mapping which approximates the Xkb keyboard mapping. The core keyboard
mapping may be updated piecemeal, on a per-key basis. When the server receives a core
protocolChangeKeyboardMapping or SetModifierMapping request, it updates its

core keyboard mapping, then uses the compatibility map to update its Xkb keyboard map-

February 5, 1996 166

Library Version 1.0/Document Revision 1.0

The X Keyboard Extension 17 The Xkb Compatibility Map

ping. When the server receivesxkbSetMap request, it updates those portions of its

Xkb keyboard mapping specified by the request, then uses its compatibility map to update
the corresponding parts of its core keyboard map. Consequently, the server’'s Xkb key-
board map and also its core keyboard map may contain components which were set
directly, and others which were computed. Figure 17.2 illustrates these relationships.

Note The core keyboard map is contained only in the server, not in any client-side data
structures.

Xkb State

Base Modifiers and Group— Effective o
Locked Modifiers and Group+——® Modifiers > Compatibility State
Latched Modifiers and Grousp- and Group —» Compatibility Lookup State

Core Pointer Button State LookupState J—> Compatibility Grab State

ServerinternalModifiers = Grab State |
IgnoreLocksModifiers
IgnoreGroupLock —

Compatibility Map
Explicit Override Controls

o

Xkb Keyboard Map |-« Core Keyboard Ma|

Figure 17.2 Server Derivation of State and Keyboard Mapping Components

There are three kinds of compatibility transformations made by the server:

1. Xkb State to Core State

Keyboard state information reported to a client in the state field of various core events
may be translated from the Xkb keyboard state maintained by the server, which
includes a group number, to core protocol state, which does not.

In addition, whenever the Xkb state is retrieved ci@pat_state
compat_grab_mod&ndcompat_lookup_modselds of theXkbStateRec returned
indicate the result of applying the compatibility map to the current Xkb state in the
server.

2. Core Keyboard Mapping to Xkb Keyboard Mapping

After core protocol requests received by the server to change the keyboard mapping
(ChangeKeyboardMapping andSetModifierMapping) have been applied to the
server’s core keyboard map, the results must be transformed to achieve an equivalent
change of the Xkb keyboard mapping maintained by the server.

3. Xkb Keyboard Mapping to Core Keyboard Mapping

After Xkb protocol requests received by the server to change the keyboard mapping
(XkbSetMap) have been applied to the server's Xkb keyboard map, the results are

February 5, 1996 Library Version 1.0/Document Revision 1.0 167

The X Keyboard Extension 17 The Xkb Compatibility Map

17.1

transformed to achieve an approximately equivalent change to the core keyboard map-
ping maintained by the server.

This chapter discusses how a client may modify the compatibility map so that subsequent
transformations have a particular result.

The XkbCompatMap Structure

All configurable aspects of mapping Xkb state and configuration to and from core proto-
col state and configuration are defined by a compatibility map, containedXkb&om-

patMap structure; plus a set of explicit override controls used to prevent particular
components of type 2 (core-to-Xkb keyboard mapping) transformations from automati-
cally occurring. These explicit override controls are maintained in a separate data structure
discussed in section 16.3.

Thecompatmember of an Xkb keyboard descriptiotkifDescRec) points to the
XkbCompatMap structure:

typedef struct _XkbCompatMapRec {

XkbSyminterpretPtr ~ sym_interpret; [* symbol based key semantics*/
XkbModsRec groups[XkbNumKbdGroups]; [* group => modifier map */
unsigned short num_si; [* # structures usedyim_interpret/
unsigned short size_si; [* # structures allocateslim_interpret/

} XkbCompatMapRec, *XkbCompatMapPtr;

compat ﬁ

sym_interpret *
groups|O] Group
groups[1] compatibility 0
maps
XkbDescRec groups[2]
groups|3]
num_si num_si-1
size_si
XkbCompatMapRec size_si- 1

XkbSyminterpretRec(s)

Figure 17.3 Xkb Compatibility Data Structures

The subsections below discuss how the compatibility map and explicit override controls
are used in each of the three cases where compatibility transformations are made.

17.1.1 Xkb State to Core Protocol State Transformation

As shown in Figure 17.3, there are fgwoup compatibility mapécontained irgroups
[0..3]) in theXkbCompatMapRec structure, one per possible Xkb group. Each group com-
patibility map is a modifier definition (see section 7.2 for a description of modifier defini-

February 5, 1996 Library Version 1.0/Document Revision 1.0 168

The X Keyboard Extension 17 The Xkb Compatibility Map

tions). Themaskcomponent of the definition specifies which real modifiers should be set
in the core protocol state field when the corresponding group is active. Since only one
group is active at any one time, only one of the four possible transformations is ever
applied at any one point in time. If the device described b}tkbBescRec does not sup-
port four groups, the extra groups fields are present, but undefined.

Normally, the Xkb-aware server reports keyboard state istdtemember of events such
as aKeyPress event anduttonPress event, encoded as follows:

bits meaning

15 0

13-14 Group index
8-12 Pointer Buttons
0-7 Modifiers

For Xkb-unaware clients, only core protocol keyboard information may be reported. Since
core protocol does not define the group index, the group index is mapped to modifier bits
as specified by thgroupggroup index] field of the compatibility map (the bits set in the
compatibility map are ORed into bits 0-7 of the state), and bits 13-14 are reported in the
event as zero.

17.1.2 Core Keyboard Mapping to Xkb Keyboard Mapping Transformation

When a core protocol keyboard mapping request is received by the server, the server’s
core keyboard map is updated, and then the Xkb map maintained by the server is updated.
Since a client may have explicitly configured some of the Xkb keyboard mapping in the
server, this automatic regeneration of the Xkb keyboard mapping from the core protocol
keyboard mapping should not modify any components of the Xkb keyboard mapping
which were explicitly set by a client. The client must set explicit override controls to pre-
vent this from happening (see section 16.3). The core-to-Xkb mapping is done as follows:

1. Map the symbols from the keys in the core keyboard map to groups and symbols on
keys in the Xkb keyboard map. The core keyboard mapping is of fixed width, so each
key in the core mapping has the same number of symbols associated with it. The Xkb
mapping allows a different number of symbols to be associated with each key; those
symbols may be divided into a different number of groups (1-4) for each key. For each
key, this process therefore involves partitioning the fixed number of symbols from the
core mapping into a set of variable length groups with a variable number of symbols in
each group. For example, if the core protocol map is of width five, the partition for one
key might result in one group with two symbols and another with three symbols. A
different key might result in two groups with two symbols plus a third group with one
symbol. The core protocol map requires at least two symbols in each of the first two
groups.

la. For each changed key, determine the number of groups represented in the new core
keyboard map. This results in a tentative group count for each key in the Xkb map.

1b. For each changed key, determine the number of symbols in each of the groups
found in step la.. There is one explicit override control associated with each of the
four possible groups for each Xkb ké&xplicitkeyTypel through
ExplicitkeyType4 . If no explicit override control is set for a group, the number
of symbols used for that group from the core map is two. If the explicit override
control is set for a group on the key, the number of symbols used for that Xkb

February 5, 1996 Library Version 1.0/Document Revision 1.0 169

The X Keyboard Extension 17 The Xkb Compatibility Map

group from the core map is the width of the Xkb group with one exception:
because of the core protocol requirement for at least two symbols in each of groups
one and two, the number of symbols used for groups one and two is the maximum
of 2 or the width of the Xkb group.

1c. For each changed key, assign the symbols in the core map to the appropriate group
on the key. If the total number of symbols required by the Xkb map for a particular
key needs more symbols than the core protocol map contains, the additional sym-
bols are taken to ldoSymbol keysyms appended to the end of the core set. If the
core map contains more symbols than are needed by the Xkb map, trailing sym-
bols in the core map are discarded. In the absence of an explicit override for group
one or two, symbols are assigned in order by group; the first symbols in the core
map are assigned to group one, in order, followed by group two, etc. For example,
if the core map contained eight symbols per key, and a particular Xkb map con-
tained 2 symbols for G1 and G2 and three for G3, the symbols would be assigned
as (G is group, L is shift level):

G1L1 G1L2 G2L1 G2L2 G3L1 G3L2 G3L3

If an explicit override control is set for group one or two, the symbols are taken
from the core set in a somewhat different order. The first four symbols from the
core set are assigned to G1L1, G1L2, G2L1, G2L2, respectively. If group one
requires more symbols, they are taken next, and then any additional symbols
needed by group two. Group three and four symbols are taken in complete
sequence after group two. For example, a key with four groups and three symbols
in each group would take symbols from the core set in the following order:

G1L1 G1L2 G2L1 G2L2 G1L3 G2L3 G3L1 G3L2 G3L3 G4L1 G4L2 G4L3

As noted above, the core protocol map requires at lease two symbols in groups one
and two. Because of this, if an explicit override control for an Xkb key is set and

group one and / or group two is of width one, it is not possible to generate the sym-
bols taken from the core protocol set and assigned to position G1L2 and / or G2L2.

1d. For each group on each changed key, assign a key type appropriate for the symbols
in the group.

le. For each changed key, remove any empty or redundant groups.

At this point, the groups and their associated symbols have been assigned to the corre-
sponding key definitions in the Xkb map.

2. Apply symbol interpretations to modify key operation. This phase is completely
skipped if theExplicitinterpret override control bit is set in the explicit controls
mask for the Xkb key (see section 16.3).

2a. For each symbol on each changed key, attempt to match the symbol and modifiers
from the Xkb map to a symbol interpretation describing how to generate the sym-
bol.

2b. When a match is found in step 2a., apply the symbol interpretation to change the
semantics associated with the symbol in the Xkb key map. If no match is found,
apply a default interpretation.

February 5, 1996 Library Version 1.0/Document Revision 1.0 170

The X Keyboard Extension 17 The Xkb Compatibility Map

The symbol interpretations used in step 2 are configurable, and may be specified using
XkbSyminterpretRec structures referenced by them_interprefield of anXkbCom-
patMapRec (see Figure 17.3).

Symbol Interpretations — the XkbSymiInterpretRec Structure

Symbol interpretations are used to guide the X server when it modifies the Xkb keymap in
step 2. above. An initial set of symbol interpretations is loaded by the server when it starts.
A client may add new ones usiKgbSetCompatMafsee section 17.4).

Symbol interpretations result in key semantics being set. When a symbol interpretation is
applied, the following components of server key event processing may be modified for the
particular key involved:

Virtual modifier map

Auto repeat

Key behavior (may be set ¥KkbKB Lock)
Key action (see section 16.1)

The XkbSyminterpretRec structure specifies a symbol interpretation:

typedef struct {
KeySym sym; /* keysym of interest &ULL*/
unsigned char flags; XkbSI_AutoRepeat, XkbSI_LockingKey */
unsigned char match; [* specifies how mods is interpreted */
unsigned char mods; * modifier bits, correspond to 8 real modifiers */
unsigned char virtual_mod; /* 1 modifier to add to key virtual mod map */
XkbAnyAction act; [* action to bind to symbol position on key */

} XkbSyminterpretRec,*XkbSyminterpretPtr;

If symis notNULL, it limits the symbol interpretation to keys on which that particular key-
sym is selected by the modifiers matching the criteria specifietbldgandmatch If sym

is NULL, the interpretation may be applied to any symbol selected on a key when the mod-
ifiers match the criteria specified liyodsandmatch

matchmust be one of the values shown in Table 17.1, and specifies how the real modifiers
specified inmodsare to be interpreted.

Table 17.1 Symbol Interpretation Match Criteria

Match Criteria Value Effect

XkbSI_NoneOf 0) None of the bits which are onmodscan be set, but
other bits can be.

XkbSI_AnyOfOrNone (1) Zero or more of the bits which are omiedscan be
set, as well as others

XkbSI_AnyOf (2) One or more of the bits which are omilwdscan be set, as
well as any others.

XkbSI_AllOf 3) All of the bits which are on imodsmust be set, but
others may be set as well

XkbSI_Exactly 4) All of the bits which are on imodsmust be set, and no

other bits may be set

In addition to the above bitsyatchmay contain thXkbSI LevelOneOnly bit, in which
case the modifier match criteria specifiedniiydsandmatchapplies only ifsymis in level

February 5, 1996 Library Version 1.0/Document Revision 1.0 171

The X Keyboard Extension 17 The Xkb Compatibility Map

one of its group; otherwisenodsandmatchare ignored and the symbol matches a condi-
tion where no modifiers are set.

#define XkbSI_LevelOneOnly (0x80) /* use mods + match only if sym is level 1 */
If no matching symbol interpretation is found, the server uses a default interpretation

where:
sym= 0
flags= XkbSI_AutoRepeat
match= XkbSI_AnyOfOrNone
mods= 0
virtual_mod= XkbNoModifier
act= SA NoAction

When a matching symbol interpretation is found in step 2a, the interpretation is applied to
modify the Xkb map as follows:

Theactfield specifies a single action to be bound to the symbol position; any key event
which selects the symbol causes the action to be taken. Valid actions are defined in section
16.1.

If the Xkb keyboard map for the key does not havExicitVyModMap control set, the
XkbSI_LevelOneOnly bit and symbol position are examined. If the

XkbSI _LevelOneOnly bit is not set ifmatchor the symbol is in position G1L1, the
virtual_modfield is examined. I¥irtual_modis notXkbNoModifier , virtual_modspecifies
a single virtual modifier to be added to the virtual modifier map for thevityal_modis
specified as an index in the range [0..15].

If the matching symbol is in position G1L1 of the key, two bits in the flags field poten-
tially specify additional behavior modifications:

#define XkbSIl_AutoRepeat (1<<0) /* key repeats if sym is in position G1L1 */
#define XkbSI_LockingKey (1<<1) /* s&B_Lock behavior if sym is in psn G1L1 */

If the Xkb keyboard map for the key does not hav&xdicitAutoRepeat control

set, its auto repeat behavior is set based on the value XifliSe AutoRepeat bit. If

the XkbSI_AutoRepeat Dbit is set, the auto-repeat behavior of the key is turned on; other-
wise, it is turned off.

If the Xkb keyboard map for the key does not hav&xfdicitBehavior control set,
its locking behavior is set based on the value oX#iSI_Lockingkey bit. If
XkbSI_LockingKey s set, the key behavior is setdB_Lock ; otherwise, it is turned off
(see section 16.3).

17.1.3 Xkb Keyboard Mapping to Core Keyboard Mapping Transformations

Whenever the server processes Xkb requests to change the keyboard mapping, it discards
the affected portion of its core keyboard mapping and regenerates it based on the new Xkb

mapping.

When the Xkb mapping for a key is transformed to a core protocol mapping, the symbols
for the core map are taken in the following order from the Xkb map:

G1L1 G1L2 G2L1 G2L2 G1L3-n G2L3-n G3L1-n G4L1-n

February 5, 1996 Library Version 1.0/Document Revision 1.0 172

The X Keyboard Extension 17 The Xkb Compatibility Map

17.2

If group one is of width one in the Xkb map, G1L2 is taken to be NoSymbol; similarly, if
group two is of width one in the Xkb map, G2L2 is taken to be NoSymbol.

If the Xkb key map for a particular key has fewer groups than the core keyboard, the sym-
bols for group one are repeated to fill in the missing core components. For example, an
Xkb key with a single width-three group would be mapped to a core mapping counting
three groups as:

G1L1 G1L2 G1L1 G1L2 G1L3 G1L3 G1L1 G1L2 G1L3

When a core keyboard map entry is generated from an Xkb keyboard map entry, a modi-
fier mapping is generated as well. The modifier mapping contains all of the modifiers
affected by any of the actions associated with the key combined with all of the real modi-
fiers associated with any of the virtual modifiers bound to the key. In addition, if any of
the actions associated with the key affect any component of the keyboard group, all of the
modifiers in themaskfield of all of the group compatibility maps are added to the modi-

fier mapping as well. While axkbSA _ISOLock action can theoretically affect any mod-
ifier, if the Xkb mapping for a key specifies ZkbSA ISOLock action, only the

modifiers or group that are set by default are added to the modifier mapping.

Getting Compatibility Map Components From the Server

UseXkbGetCompatMafo fetch any combination of the current compatibility map com-
ponents from the server. When another client modifies the compatibility map, you are
notified if you have selected fatkbCompatMapNotify events (see section 17.Xkb-
GetCompatMays particularly useful when you receive an event of this type, as it allows
you to update your program’s version of the compatibility map to match the modified ver-
sion now in the server. If your program is dealing with multiple servers and needs to con-
figure them all in a similar manner, the updated compatibility map may be used to
reconfigure other servers.

Note To make a complete matching configuration you must also update the explicit override
components of the server state.

StatusXkbGetCompatMap(display, which, xkb

Display * display, [* connection to server */
unsigned int which /* mask of compatibility map components to fetch */
XkbDescRec * xkby /* keyboard description where results placed */

XkbGetCompatMafetches the components of the compatibility map specifiadioh

from the server specified lisplayand places them in ttoempatstructure of the key-
board descriptiomkhb. Valid values fomwhichare an inclusive OR of the values shown in
Table 17.2.

Table 17.2 Compatibility Map Component Masks

Mask Value Affecting

XkbSyminterpMask (1<<0) Symbol interpretations
XkbGroupCompatMask (1<<1) Group maps

XkbAllCompatMask (0x3) All compatibility map components

If no compatibility map structure is allocatedxikb upon entry XkbGetCompatMagllo-
cates one. If one already exists, its contents are overwritten with the returned results.

February 5, 1996 Library Version 1.0/Document Revision 1.0 173

The X Keyboard Extension 17 The Xkb Compatibility Map

XkbGetCompatMafetches compatibility map information for the device specified by the
device_speftield of xkh. Unless you have specifically modified this field, it is the default
keyboard devicexkbGetCompatMapeturnsSuccess if successfulBadAlloc if it is

unable to obtain necessary storage for either the return values or workBsuihtatch if
thedpyfield of thexkbargument is noWNULLand does not match thiesplayargument,
andBadLength under certain conditions caused by server or Xkb implementation errors.

17.3 Using the Compatibility Map

Xkb provides several functions which make it easier to apply the compatibility map to
configure a client side Xkb keyboard mapping, given a core protocol representation of part
or all of a keyboard mapping. Obtain a core protocol representation of a keyboard map-
ping from an actual server (by usiKgetKeyboardMappindgor example), a data file, or
some other source.

To update a local Xkb keyboard map to reflect the mapping expressed by a core format
mapping by calling the functioxkbUpdateMapFromCore

Bool XkbUpdateMapFromCore(xkh, first_keynum_keysmap_widthcore_keysymghangey

XkbDescPtr xkby [* keyboard description to update */

KeyCode first_key /* keycode of first key description to update */
int num_keys /* number of key descriptions to update */

int map_width /* width of core protocol keymap */

KeySym * core_keysyms /* symbols in core protocol keymap */
XkbChangesPtr changes [* backfilled with changes made to Xkb */

XkbUpdateMapFromCormterprets input argument information representing a keyboard
map in core format to update the Xkb keyboard description pasgkd @nly a portion

of the Xkb map is updated — the portion corresponding to keys with keycodes in the
rangefirst_keythroughfirst_key+ num_keys 1. If XkbUpdateMapFromCoris being called

in response to BappingNotify event first_keyandnum_keysre reported in thiglap-
pingNotify event.core_keysymesontains the keysyms corresponding to the keycode
range being updated, in core keyboard description arthgy. widthis the number of key-
syms per key iwore_keysymsThus, the firsmap_widthentries incore_keysymare for

the key with keycodérst_key the neximap_widthentries are for kefirst_key+ 1, etc.

In addition to modifying the Xkb keyboard mappingckb, XkbUpdateMapFromCore
backfills the changes structure whose address is passbdrigedo indicate the modifi-
cations which were made. You may then cisangesn subsequent calls suchXisbSet-
Map, to propagate the local modifications to a server.

February 5, 1996 Library Version 1.0/Document Revision 1.0 174

The X Keyboard Extension 17 The Xkb Compatibility Map

When dealing with core keyboard mappings or descriptions, it is sometimes necessary to
determine the Xkb key types appropriate for the symbols bound to a key in a core key-
board mapping. CakkbKeyTypesForCoreSymbddts this purpose:

int XkbKeyTypesForCoreSymbolg§map_width core_symgprotected, types_inout,
xkb_syms_rtrp

XkbDescPtr xkb; * keyboard description in which to place symbols*/

int map_width /* width of core protocol keymap ixkb_syms_rtrri/

KeySym * core_syms /* core protocol format array of KeySyms */

unsigned int protected * explicit key types */

int * types_inout; /* backfilled with the canonical types bound to groups one and
two for the key. */

KeySym * xkb_syms_rtrn/* backfilled with symbols bound to the key in the Xkb
mapping. */

XkbKeyTypesForCoreSymbeispands the symbols aore_symsnd types itypes_inout
according to the rules specified in section 12 of the core protocol, then chooses canonical
key types (canonical key types are defined in section 15.2.1 on page 129) for groups 1 and
2 using the rules specified by the Xkb protocol, and places thgkibirsyms_rtrnwhich

will be nonNULL

A core keymap is a two-dimensional array of keysyms. Infegs widthcolumns and
max_key_ codeows.XkbKeyTypesForCoreSymbaékes a single row from a core key-

map, determines the number of groups associated with it, the type of each group, and the
symbols bound to each group. The return value is the number of giypgss,inoubas

the types for each group, axkb_syms_rtrinas the symbols in Xkb order (that is, groups

are contiguous, regardless of size).

protectedcontains the explicitly protected key types. There is one explicit override con-
trol associated with each of the four possible groups for each Xkb key,

ExplicitkeyTypel throughExplicitkeyType4 ; protectedis an inclusive OR of

these controlgnap_widthis the width of the core keymap and isn’t dependent on any Xkb
definitions.types_inouts an array of four type indices. On inpiypes_inoutontains the
indices of any types already assigned to the key, in case they’re explicitly protected from
change.

Upon returntypes_inoutontains any automatically selected (that is, canonical) types
plus any protected types. Canonical types are assigned to all four groups if there are
enough symbols to do so. The four entrietypes_inoutorrespond to the four groups for
the key in question.

If the groups mapping does not change, but the symbols assigned to an Xkb keyboard
compatibility map do change, the semantics of the key may be modified. To apply the new
compatibility mapping to an individual key to get its semantics updateXldafpply-

CompatMapToKey
Bool XkbApplyCompatMapToKey (xkb, key change}p
XkbDescPtr xkb; /* keyboard description to be updated */
KeyCode key, /* key to be updated */
XkbChangesPtr changes /* notes changes to the Xkb keyboard description */

XkbApplyCompatMapToKeassentially performs the operation described in section 17.1.2
to a specific key. This updates the behavior, actions, repeat status and virtual modifier
bindings of the key.

February 5, 1996 Library Version 1.0/Document Revision 1.0 175

The X Keyboard Extension 17 The Xkb Compatibility Map

17.4 Changing the Server’s Compatibility Map

To modify the server’'s compatibility map, first modify a local copy of the Xkb compati-
bility map, then calXkbSetCompatMagy'ou may allocate a new compatibility map for
this purpose usin¥kbAllocCompatMajisee section 17.6). You may also use a compati-
bility map from another server, although you need to adjustdétiee_spebeld in the
XkbDescRec accordingly. Note that symbol interpretations in a compatibility map
(sym_interpretthe vector oXkbSyminterpretRec structures) are also allocated using
this same function.

Bool XkbSetCompatMap(display, which, xkb, update_actigns

Display * display, [* connection to server */

unsigned int which /* mask of compat map components to set */
XkbDescPtr xkby [* source for compat map components */
Bool update_actiong* True => apply to server’s keyboard map */

XkbSetCompatMagpopies compatibility map information from the keyboard description
in xkbto the server specified displays compatibility map for the device specified by the
device_spetield of xkh. Unless you have specifically modified this field, it is the default
keyboard devicewhichspecifies the compatibility map components to be set, and is an
inclusive OR of the bits shown in Table 17.2 on page 174.

After updating its compatibility map for the specified devicejpdlate actionss True

the server applies the new compatibility map to its entire keyboard for the device to gener-
ate a new set of key semantics, compatibility state, and a new core keyboard map. If
update_actionss False , the new compatibility map is not used to generate any modifica-
tions to the current device semantics, state, or core keyboard map. One reason for not
applying the compatibility map immediately would be if one server was being configured
to match another on a piecemeal basis; the map shouldn’t be applied until everything is
updated. To force an update at a later point in time X¢dSetCompatMagpecifying

whichas zero andpdate_actionssTrue .

XkbSetCompatMageturnsTrue if successful, an#talse if unsuccessful. The server
may report problems it encounters when processing the request subsequently via protocol
errors.

To add a symbol interpretation to the list of symbol interpretations Xkla@ompatRec ,
call XkbAddSyminterpret

XkbSyminterpretPtkkbAddSyminterpret (xkb, si, updateMap, changes

XkbDescPtr xkby /* keyboard description to be updated */
XkbSyminterpretPtr si; I* symbol interpretation to be added */

Bool updateMap /* True =>apply compatibility map to keys */
XkbChangesPtr changes /* changes are put here */

XkbAddSymiInterpretddssi to the list of symbol interpretationsxihb. If updateMaps

True , it (re)applies the compatibility map to all of the keys on the keyboartaligess
non-NULL it reports the parts of the keyboard that were affected (unpelsteMaps

True , not much changesf¥kbAddSyminterpretturns a pointer to the actual new symbol
interpretation in the list, ddULL.f it failed.

February 5, 1996 Library Version 1.0/Document Revision 1.0 176

The X Keyboard Extension 17 The Xkb Compatibility Map

17.5 Tracking Changes to the Compatibility Map

The server automatically generakdappingNotify events when the keyboard mapping
changes. If you wish to be notified of changes to the compatibility map, you should select
for XkbCompatMapNotify events. If you select fofkbMapNotify events, you no

longer receive the automatically generatappingNotify events. If you subsequently
deseleciXkbMapNotifyEvent delivery, you again receiwdappingNotify ~ events.

To receivexkbCompatMapNotify events under all possible conditions, eddbSelect-
Events(see section 4.3) and paddbCompatMapNotifyMask in bothbits _to _change
andvalues_for_bits

To receivexkbCompatMapNotify events only under certain conditions, ¢étbSelect-
EventDetailausingXkbCompatMapNotify — as theevent_typend specifying the desired
map changes ihits_to_changandvalues_for_bitsising mask bits from Table 17.2 on
page 174.

Note that you are notified of changes you make yourself, as well as changes made by other
clients.

The structure for th¥kbCompatMapNotifyEvent is:

typedef struct {
int type; I* Xkb extension base event code */
unsigned long serial; [* X server serial number for event */
Bool send_event; /Arue => synthetically generated */
Display * display; [* server connection where event generated */
Time time; [* server time when event generated */
int xkb_type; [*XkbCompatMapNotify — */
int device; /* Xkb device id, will not b&XkbUseCoreKbd */
unsigned int changed_groups;/* number of group maps changed */
int first_si; /* index to 1st changed symbol interpretation */
int num_si; /* number of changed symbol interpretations */
int num_total_si; /* total number of valid symbol interpretations */

} XkbCompatMapNotifyEvent;;

changed_groups the number of group compatibility maps which have changed. If you
are maintaining a corresponding copy of the compatibility map, or get a fresh copy from
the server usinkkbGetCompatMaghanged_groupeeferences
groupg0..changed_group4] in the XkbCompatMapRec structure.

first_siis the index of the first changed symbol interpretatim_siis the number of
changed symbol interpretations, angn_total_sis the total number of valid symbol
interpretations. If you are maintaining a corresponding copy of the compatibility map, or
get a fresh copy from the server uskipGetCompatMagirst_si, num_sj and

num_total siare appropriate for use with thempat.sym_interpratector in this struc-

ture.

February 5, 1996 Library Version 1.0/Document Revision 1.0 177

The X Keyboard Extension 17 The Xkb Compatibility Map

17.6 Allocating and Freeing Compatibility Map

If you are modifying the compatibility map, you need to allocate a new compatibility map
if you do not already have one available. To do soXddlAllocCompatMap

StatusXkbAllocCompatMap (xkb, which, num_¥i

XkbDescPtr xkb; /* keyboard description in which to allocate compat map */
unsigned int which /* mask of compatibility map components to allocate */
unsigned int num_sj /* number of symbol interpretations to allocate */

xkb specifies the keyboard description for which compatibility maps are to be allocated.
The compatibility map is theompatfield in this structure.

which specifies the compatibility map components to be allocatedX{d#eetCompat-
Map, in section 17.2)whichis an inclusive OR of the bits shown in Table 17.2 on page
174.

num_sispecifies the total number of entries to allocate in the symbol interpretation vector
(xkb.compat.sym_interpjet

Note that symbol interpretations in a compatibility map $§yma_interprevector ofXkb-
SyminterpretRec structures) are also allocated using this same function. To insure that
there is sufficient space in the symbol interpretation vector for entries to be added, call
XkbAllocCompatMaypecifyingwhich asXkbSyminterpretMask , and the number of

free symbol interpretations needechiinm_si

XkbAllocCompatMapeturnsSuccess if successfulBadMatch if xkbis NULL, or Bad-
Alloc if errors are encountered when attempting to allocate storage.

To free an entire compatibility map or selected portions of oneXkhFreeCompatMap

void XkbFreeCompatMap(xkb, which, free_map

XkbDescPtr xkby /* Xkb description in which to free compatibility map */
unsigned int which /* mask of compatibility map components to free */
Bool free_map /* True =>freeXxkbCompatMap structure itself */

whichspecifies the compatibility map components to be freed{se€&etCompatMapn
section 17.2)whichis an inclusive OR of the bits shown in Table 17.2 on page 174.

free_mapndicates whether thekbCompatMap structure itself should be freed. If
free_maps True , whichis ignored, all notNULL compatibility map components are
freed, and theompatfield in theXkbDescRec referenced bykbis set toNULL

February 5, 1996 Library Version 1.0/Document Revision 1.0 178

The X Keyboard Extension 18 Symbolic Names

18

18.1

Symbolic Names

The core protocol does not provide any information to clients other than that actually used
to interpret events. This makes it difficult to write an application that presents the key-
board to a user in an easy-to-understand way. Such applications have to examine the ven-
dor string and keycodes to determine the type of keyboard connected to the server and
then examine keysyms and modifier mappings to determine the effects of most modifiers
(theShift , Lock andControl modifiers are defined by the core protocol but no seman-
tics are implied for any other modifiers).

To make it easier for applications to present a keyboard to the user, Xkb supports sym-
bolic names for most components of the keyboard extension. Most of these symbolic
names are grouped into theamescomponent of the keyboard description.

The XkbNamesRec Structure
The names component of the keyboard description is defined as follows:

#define XkbKeyNameLength 4

#define XkbKeyNumVirtualMods 16

#define XkbKeyNumindicators 32

#define XkbKeyNumKbdGroups 4

#define XkbMaxRadioGroups 32

typedef struct {
char name[XkbKeyNameLength]; /* symbolic key hames */

} XkbKeyNameReg*XkbKeyNamePtr;

typedef struct {
char real[XkbKeyNameLength]; /* this key name must be in the keys array */
char alias|[XkbKeyNamelLength]; /* symbolic key name as alias for the key */

} XkbKeyAliasRec,*XkbKeyAliasPtr;
typedef struct _XkbNamesRec {

Atom keycodes; /* identifies range and meaning of keycodes */

Atom geometry; /* identifies physical location, size and shape of keys */
Atom symbols; [*identifies the symbols logically bound to the keys
Atom types; /*identifies the set of key types */

Atom compat; *identifies actions for keys using core protocol */
Atom vmods[XkbNumVirtualMods]; /"symbolic namesor virtual modifiers */
Atom indicators[XkbNumIndicators]; /symbolic namesor indicators */

Atom groups[XkbNumKbdGroups]; Bymbolic names for keyboard groups */
XkbKeyNamePtr keys; Isymbolic key name array

XkbKeyAliasPtr key aliases; /* real/alias symbolic name pairs array */

Atom * radio_groups; /* radio group name array */

Atom phys_symbols; /tdentifies the symbols engraved on the keybdard
unsigned char num_keys; I* number of keys inkbgsarray */

unsigned char num_key_aliases;/* number of keys ikéhye aliasearray */

unsigned short num_rg; I* number of radio groups */

} XkbNamesReg*XkbNamesPtr;/*

Thekeycodesame identifies the range and meaning of the keycodes returned by the key-
board in question. Thgeometryname, on the other hand, identifies the physical location,

February 5, 1996 Library Version 1.0/Document Revision 1.0 179

The X Keyboard Extension 18 Symbolic Names

size and shape of the various keys on the keyboard. As an example to distinguish between
these two names, consider function keys on PC-compatible keyboards. Function keys are
sometimes above the main keyboard and sometimes to the left of the main keyboard, but
the same keycode is used for the key that is logically F1 regardless of physical position.
Thus, all PC-compatible keyboards share a similar keycodes name but may have different
geometry names.

Note The keycodes name is intended to be a very general description of the keycodes
returned by a keyboard; A single keycodes name might cover keyboards with differ-
ing numbers of keys provided all keys have the same semantics when present. For
example, 101 and 102 key PC keyboards might use the same name. In these cases,
applications can use the keybogmbmetryname to determine which subset of the
named keycodes is in use.

Thesymbolsname identifies the symbols logically bound to the keys. The symbols name
is a human or application-readable description of the intended locale or usage of the key-
board with these symbols. Thhys_symbolaame, on the other hand, identifies the sym-
bols actually engraved on the keyboard. Given thissyhgolsname anghhys_symbols
names might be different. For example, the description for a keyboard that has English US
engravings, but that is using Swiss German symbols might halwesasymboleame of
“en_US” and ssymbolshame of “de_CH.”

Thetypesname provides some information about the set of key types (see section 15.2)
that can be associated with the keyboard. In addition, each key type can have a name, and
each shift level of a type can have a name. Although these names are stored in the map
description with each of the types, they are accessed using the same methods as the other
symbolic names.

Thecompatname provides some information about the rules used to bind actions to keys
that are changed using core protocol requests.

Xkb provides symbolic names for each of the four keyboard groups, sixteen virtual modi-
fiers, thirty-two keyboard indicators, and four keyboard groups. These names are held in
thevmodsindicators andgroupsfixed-length arrays.

Each key has a four-byte symbolic name. All of the symbolic key names are held in the
keysarray, anchum_keyseports the number of entries are in the keys array. For each key,
the key name links keys with similar functions or in similar positions on keyboards that
report different keycodes. For example, Bi&key may emit keycode 23 on one keyboard
and keycode 86 on another. By naming this key “FKO1” on both keyboards, the keyboard
layout designer can re-use parts of keyboard descriptions for different keyboards.

Key aliases allow the keyboard layout designer to assign multiple key names to a single
key. This allows the keyboard layout designer to refer to keys using either their position or
their “function.” For example, a keyboard layout designer may wish to refer to the left
arrow key on a PC keyboard using the ISO9995-5 positional specification of A31 or using
the functional specification of LEFT. They_aliasesield holds a variable-length array

of real and alias key name pairs, and the total number of entrieskevthaliasesirray is

held innum_key_aliases$-or each real and alias key name pairyéa¢field refers to the

a name in the keys array, and #iias field refers to the alias for that key. Using the pre-
vious example, the keyboard designer may use the name A31 in the keys array, but also
define the name LEFT as an alias for A31 inkbg aliasesrray.

February 5, 1996 Library Version 1.0/Document Revision 1.0 180

The X Keyboard Extension 18 Symbolic Names

Note Key aliases defined in the geometry component of a keyboard mapping (see Chapter
13) override those defined in the keycodes component of the server database, which
are stored in thXkbNamesRec (xkb->name} Therefore, consider the key aliases
defined by the geometry before considering key aliases supplied XihhEames-

Rec.

A radio group is a set of keys whose behavior simulates a set of radio buttons. Once a key
in a radio group is pressed, it stays logically depressed until another key in the group is
pressed, at which point the previously depressed key is logically release. Consequently, at
most one key in a radio group can be logically depressed at one time.

Each radio group in the keyboard description can have a name. These names are held in
the variable-length arrayadio _groups andnum_rgtells how many elements are in the
radio_groupsarray.

18.2 Symbolic Names Masks

Xkb provides several routines that work with symbolic names. Each of these routines uses
a mask to specify individual fields of the structures described above. These masks and
their relationships to the fields in a keyboard description are shown in Table 18.1.

Table 18.1 Symbolic Names Masks

Mask Bit Value Keyboard Field
Component

XkbKeycodesNameMask (1<<0) Xkb->names keycodes
XkbGeometryNameMask (1<<1) Xkb->names geometry
XkbSymbolsNameMask (1<<2) Xkb->names symbols
XkbPhysSymbolsNameMask (1<<3) Xkb->names phys_symbols
XkbTypesNameMask (1<<4) Xkb->names type
XkbCompatNameMask (1<<5b) Xkb->names compat
XkbKeyTypeNamesMask (1<<6) Xkb->map type[*].name
XkbKTLevelNamesMask (1<<7) Xkb->map type[*].Ivl_names[*]
XkbindicatorNamesMask (1<<8) Xkb->names indicators[*]
XkbKeyNamesMask (1<<9) Xkb->names keys[*], num_keys
XkbKeyAliasesMask (1<<10) Xkb->names key_aliases[*], num_key aliases
XkbVirtualModNamesMask (1<<11) Xkb->names vmods[*]
XkbGroupNamesMask (1<<12) Xkb->names groups[*]
XkbRGNamesMask (1<<13) Xkb->names radio_groups[*], num_rg
XkbComponentNamesMask (0x3f) Xkb->namekeycodes,

geometry,

symbols,

physical symbols,

types, and

compatibility map
XkbAlINamesMask (0x3fffy ~ Xkb->names all name components

February 5, 1996 Library Version 1.0/Document Revision 1.0 181

The X Keyboard Extension 18 Symbolic Names

18.3

18.4

Getting Symbolic Names From the Server
To obtain symbolic names from the server, BkbGetNames

StatusXxkbGetNamegdpy, which, Xkp
Display * dpy; [* connection to the X server */
unsigned int whict /* mask of names or map components to be updated */
XkbDescPtr xkb [* keyboard description to be updated */

XkbGetNameeetrieves symbolic names for the components of the keyboard extension
from the X server. Therhich parameter specifies the name components to be updated in
thexkb parameter, and is the bitwise inclusive OR of the valid names mask bits defined in
Table 18.1.

If the namedield of the keyboard descriptiotikbis NULL, XkbGetNameallocates and
initializes thenamescomponent of the keyboard description before obtaining the values
specified bywhich If thenamedield of xkbis notNULL, XkbGetNamesbtains the values
specified bywhichand copies them into the keyboard descripX&h

If the mapcomponent of the&kb parameter iNULL, XkbGetNamedoes not retrieve type
or shift level names, evenXkbKeyTypeNamesMask or XkbKTLevelNamesMask are
set inwhich

XkbGetNamesan returrSuccess , or BadAlloc , BadLength , BadMatch , andBadim-
plementation errors.

To free symbolic names, uX&bFreeNamegsee section 18.6)

Changing Symbolic Names on the Server

To change the symbolic names in the server, first modify a local copy of the keyboard
description and then use eithé&tbSetNamesr, to save network traffic, useXxabNa-
meChangesRecstructure and cakkbChangeNames download the changes to the
server XkbSetNameandXkbChangeNamesan generatBadAlloc , BadAtom,

BadLength , BadMatch andBadimplementation errors.

Bool XkbSetNamegdpy, which, first_type, num_types, Xkb
Display * dpy; /* connection to the X server */
unsigned int which /* mask of names or map components to be changed */
unsigned int first_type; /* first type whose name is to be changed */
unsigned int num_types /* number of types for which names are to be changed */
XkbDescPtr xkby [* keyboard description from which names are to be taken */

UseXkbSetName® change many names at the same time. For each bitvdatin Xkb-
SetNamesakes the corresponding value (or values in the case of arrays) from the key-
board descriptiomkb and sends it to the server.

Thefirst_typeandnum_typesrguments are used onlyXkbKeyTypeNamesMask or
XkbKTLevelNamesMask is set inwhich and specify a subset of the types for which the
corresponding names are to be changed. If either or both of these mask bits are set but the
specified types are illegaXkbSetNameeturnsFalse and does not update any of the

names specified iwhich The specified types are illegalikb does not include a map
component or ifirst_typeandnum_typespecify types that are not defined in the key-

board description.

February 5, 1996 Library Version 1.0/Document Revision 1.0 182

The X Keyboard Extension 18 Symbolic Names

The XkbNameChangesRec Structure

The XkbNameChangesRec allows applications to identify small modifications to the
symbolic names and effectively reduces the amount of traffic sent to the server:

typedef struct _XkbNameChanges {

unsigned int changed; fAame components that have changed

unsigned char first_type; [* first key type with a new name */

unsigned char num_types; /* number of types with new names */

unsigned char first_Ivl; [* first key type with new level names */

unsigned char num_lIvls; /* number of key types with new level names */

unsigned char num_aliases; /* if key aliases changed, total number of key aliases */
unsigned char num_rg; [* if radio groups changed, total number of radio groups */
unsigned char first_key; [* first key with a new name

unsigned char num_keys; /* number of keys with new names

unsigned shortchanged_vmods; /* mask of virtual modifiers for which names have changed */
unsigned long changed_indicators;/* mask of indicators for which names were changed */
unsigned char changed_groups;/* mask of groups for which names were changed */

} XkbNameChangesRegc*XkbNameChangesPtr

Thechangedield specifies the name components that have changed and is the bitwise
inclusive OR of the valid names mask bits defined in Table 18.1 on page 182. The rest of
the fields in the structure specify the ranges that have changed for the various kinds of
symbolic names, as shown in Table 18.2.

Table 18.2 XkbNameChanges Fields

Mask Fields Component Field
XkbKeyTypeNamesMask first_type, Xkb->map type[*].name
num_types
XkbKTLevelNamesMask first_Ivl, Xkb->map type[*].lvl_names[*]
num_Ivls
XkbKeyAliasesMask num_aliases Xkb->names key_ aliases[*]
XkbRGNamesMask num_rg Xkb->names radio_groups[*]
XkbKeyNamesMask first_key, Xkb->names keys[*]
num_keys

XkbVirtualModNamesMask changed_vmods Xkb->names vmods[*]
XkbIndicatorNamesMask changed_indicators Xkb->names indicators[*]
XkbGroupNamesMask changed_groups Xkb->names groups[*]

XkbChangeNamgwzovides a more flexible method for changing symbolic names than
XkbSetNamesnd requires the use of XkbNameChangesRec structure.

Bool XkbChangeNamegdpy, xkb, changés
Display * dpy; [* connection to the X server */
XkbDescPtr xkiy /* keyboard description from which names are to be taken */
XkbNameChangesPtchanges /* hames map components to be updated on the server */

XkbChangeNamesopies any names specified dlyangedrom the keyboard description,
xkh to the X server specified ldpy. XkbChangeNamesborts and returfisalse if any
illegal type names or type shift level names are specifiathbgges

February 5, 1996 Library Version 1.0/Document Revision 1.0 183

The X Keyboard Extension 18 Symbolic Names

18.5 Tracking Name Changes

Whenever a symbolic name changes in the server’s keyboard description, the server sends
a XkbNamesNotify event to all interested clients. To receive hame notify events, call
XkbSelectEventsee section 4.3) witkkbNamesNotifyMask in both the
bits_to_changandvalues_for_bitparameters.

To receive events for only specific names, XikbSelectEventDetailSet theevent_type
parameter tXkbNamesNotify , and set both thieits to_changandvalues_for_bits
detail parameter to a mask composed of a bitwise OR of masks in Table 18.1 on page 182.

The structure for th&kbNamesNotify event is defined as follows:

typedef struct {
int type; I* Xkb extension base event code */
unsigned long serial; /* X server serial number for event */
Bool send_event; Arue => synthetically generated */
Display * display; [* server connection where event generated */
Time time; /* server time when event generated */
int xkb_type; /*XkbNamesNotify — */
int device; * Xkb device id, will not b&XkbUseCoreKbd */
unsigned int changed; I* mask e&éme components that have changed
int first_type; [* first key type with a new name */
int num_types; /* number of types with new names */
int first_Ivl; [* first key type with new level names */
int num_|Ivls; /* number of key types with new level names */
int num_aliases; [* if key aliases changed, total number of key aliases */
int num_radio_groups;/* if radio groups changed, total number of radio groups */

unsigned int changed_vmaods; /* mask of virtual modifiers for which names have changed */
unsigned int changed_groups; /* mask of groups for which names were changed */
unsigned int changed_indicators;/* mask of indicators for which names were changed */
int first_key; [* first key with a new name */
int num_keys; /* number of keys with new names */

} XkbNamesNotifyEvent,

Thechangedield specifies the name components that have changed and is the bitwise
inclusive OR of the valid names mask bits defined in Table 18.1 on page 182. The other
fields in this event are interpreted as the like-named fields XkialameChangesRec,

as defined above.

When your application receives &bNamesNotify event, you can note the changed
names in a changes structure usfkpNoteNameChanges

void XkbNoteNameChangeéold, new wanted

XkbNameChangesPtrold; I* XkbNameChanges structure to be updated */
XkbNamesNotifyEvent fiew * event from which changes are to be copied */
unsigned int wanted /* types of names for which changes are to be noted */

Thewantedparameter is the bitwise inclusive OR of the valid names mask bits shown in
Table 18.1 on page 18%kbNoteNameChangespies any changes that are reported in
newand specified invantedinto the changes record specifieddig.

February 5, 1996 Library Version 1.0/Document Revision 1.0 184

The X Keyboard Extension 18 Symbolic Names

18.6

To update the local copy of the keyboard description with the actual values, gabs to
GetNameChangédkbe results of one or more callsXbNoteNameChanges

StatusXkbGetNameChanges¢dpy, xkh change}p
Display * dpy; [* connection to the X server */
XkbDescPtr xkby * keyboard description to which names are copied */
XkbNameChangesPtr changes /* names components to be obtained from the server */

XkbGetNameChangexamines thehangegarameter, retrieves the necessary informa-
tion from the server, and places the results intxkibdkeyboard description.

XkbGetNamesChangean generatBadAlloc , Badimplementation andBadMatch
errors.

Allocating and Freeing Symbolic Names

Most applications do not need to directly allocate symbolic names structures. Do not allo-
cate a names structure directly usialloc or Xmallocif your application changes the
number of key aliases or radio groups or constructs a symbolic names structure without
loading the necessary components from the X server. Insteakind#ocNames

StatusXkbAllocNames(xkb, which, num_rg, num_key_aliases)
XkbDescPtr xkb; /* keyboard description for which names are to be allocated */
unsigned int which; /* mask of names to be allocated */
int num_rg; /* total number of radio group names needed */
int num_key aliaseg;total number of key aliases needed */

XkbAllocNamesgan returrBadAlloc , BadMatch andBadValue errors. Thewvhich
parameter is the bitwise inclusive OR of the valid nhames mask bits defined in Table 18.1
on page 182.

Do not free symbolic names structures directly ufiegor XFree UseXkbFreeNames
instead.

void XkbFreeNamegxkb, which, free_map)

XkbDescPtr xkb; * keyboard description for which names are to be freed */
unsigned int which /* mask of names components to be freed */
Bool free_map /* True => XkbNamesRec structure itself should be freed */

Thewhichparameter is the bitwise inclusive OR of the valid nhames mask bits defined in
Table 18.1 on page 182.

February 5, 1996 Library Version 1.0/Document Revision 1.0 185

The X Keyboard Extension 19 Replacing a Keyboard “On the Fly”

19

Replacing a Keyboard “On the Fly”

Some operating system and X server implementations allow “hot-plugging” of input
devices. When using these implementations, input devices can be unplugged and new
ones plugged in without restarting the software that is using those devices. There is no
provision in the standard X server for notification of client programs if input devices are
unplugged and/or new ones plugged in. In the case of the X keyboard, this could result in
the X server having a keymap that does not match the new keyboard.

If the X server implementation supports the X input device extension, a client program
may also change the X keyboard programmatically. A@kangeKeyboardDevidaput
extension request allows a client to designate an input extension keyboard device as the X
keyboard, in which case the old X keyboard device becomes inaccessible except via the
input device extension. In this case, core protx@®dhppingNotify and input extension
XChangeDeviceNotify ~ events are generated to notify all clients that a new keyboard

with a new keymap has been designated.

When a client opens a connection to the X server, the server reports the minimum and
maximum keycodes. The server keeps track of the minimum and maximum keycodes last
reported to each client. When delivering events to a particular client, the server filters out
any events that fall outside of the valid range for the client.

Xkb provides arkkbNewKeyboardNotify ~ event which reports a change in keyboard
geometry and/or the range of supported keycodes. The server can generate an
XkbNewKeyboardNotify =~ event when it detects a new keyboard, or in response to an
XkbGetKeyboardByNanrequest which loads a new keyboard description. Selecting for
XkbNewKeyboardNotify ~ events allows Xkb-aware clients to be notified whenever a
keyboard change occurs that may affect the keymap.

When a client requeskkbNewKeyboardNotify =~ events, the server compares the range

of keycodes for the current keyboard to the range of keycodes that are valid for the client.
If they are not the same, the server immediately sends the cligkbawKeyboardNo-

tify event. Even if the “new” keyboard is not new to the server, it is new to this particu-
lar client.

When the server sends #kbNewKeyboardNotify event to a client to inform it of a

new keycode range, it resets the stored range of legal keycodes for the client to the key-
code range reported in the event; it does not reset this range for the client if it does not sent
an XkbNewKeyboardNotify ~ event to a client. Since Xkb-unaware clients and

Xkb-aware clients that do not requ&&bNewKeyboardNotify ~ events are never sent

these events, the server’s notion of the legal keycode range never changes, and these cli-
ents never receive events from keys that fall outside of their notion of the legal keycode
range.

Clients which have not selected to recefkbNewKeyboardNotify ~ events do, how-

ever, receive th&kbNewKeyboardNotify ~ event when a keyboard change occurs. Cli-
ents which have not selected to receive this event also receive numerous other events
detailing the individual changes which occur when a keyboard change occurs.

Clients wishing to track changesnmn_key codendmax_key codmust watch for both
XkbNewKeyboardNotify andXkbMapNotify events, since a simple mapping change
causes axkbMapNotify event and may change the range of valid keycodes, but does

February 5, 1996 Library Version 1.0/Document Revision 1.0 186

The X Keyboard Extension 19 Replacing a Keyboard “On the Fly”

not cause aXkbNewKeyboardNotify = event. If a client does not select KkbNewKey-
boardNotify ~ events, the server restricts the range of keycodes reported to the client.

In addition to filtering out-of-range key events, Xkb:

 Adjusts core protocdlappingNotify events to refer only to keys that match the
stored legal range.

» Reports keyboard mappings for keys that match the stored legal range to clients that
issue a core protoc@etKeyboardMapping request.

» Reports modifier mappings only for keys that match the stored legal range to clients
that issue a core protod@etModifierMapping request.

 Restricts the core protocGhangeKeyboardMapping andSetModifierMap-
ping requests to keys that fall inside the stored legal range.

In short, Xkb does everything possible to hide from Xkb-unaware clients the fact that the
range of legal keycodes has changed, since such clients cannot be expected to deal with
them. Xkb events and requests are not modified in this manner; all Xkb events report the
full range of legal keycodes. No requested Xkb events are discarded, and no Xkb requests
have their keycode range clamped.

The structure for th&kbNewKeyboardNotify event is defined below:
typedef struct _XkbNewKeyboardNotify {

int type; /* Xkb extension base event code */
unsigned long serial; [* X server serial number for event*/

Bool send_event; [Arue => synthetically generated */
Display * display; [* server connection where event generated */
Time time; /* server time when event generated */

int xkb_type; /*XkbNewKeyboardNotify */

int device; /* device id of new keyboard */

int old_device; * device id of old keyboard */

int min_key code; /* min keycode of new keyboard */

int max_key_code; I* max keycode of new keyboard */

int old_min_key code; /* min keycode of old keyboard */

int old_max_key code; /* max keycode of old keyboard */
unsigned int changed; /* changed aspects - see masks below */
char reqg_major; /* major request that caused change */
char req_minor; /* minor request that caused change */

} XkbNewKeyboardNotifyEvent;

To receive name notify events, cakbSelectEvenisee section 4.3) witkkoNewKey-
boardNotifyMask in both thebits_to_changandvalues_for_bitparameters. To

receive events for only specific names, ¥gbSelectEventDetailSet theevent_type
parameter tXkbNewKeyboardNotify , and set both thieits to_changand
values_for_bitgletail parameter to a mask composed of a bitwise OR of masks in Table
19.1.

Table 19.1 XkbNewKeyboardNotifyEvent Details

XkbNewKe_yboard Notify Value
Event Details
XkbNKN_KeycodesMask (1L<<0) Notification of keycode range changes wanted
XkbNKN_GeometryMask (1L<<1) Notification of geometry changes wanted
XkbNKN_DevicelDMask (1L<<2) Notification of device id changes wanted

Circumstances

February 5, 1996 Library Version 1.0/Document Revision 1.0 187

The X Keyboard Extension 19 Replacing a Keyboard “On the Fly”

Table 19.1 XkbNewKeyboardNotifyEvent Details

XkbNeWKeyboard Notify Value
Event Details
XkbNKN_AlIChangesMask (0x7) Includes all of the above masks

Circumstances

Thereq_majorandreq_minorfields indicate what type of keyboard change has occurred.

If req_majorandreq_minorare zero, the device change was not caused by a software
request to the server — a spontaneous change has occurred such as hot-plugging a new
device. In this caseleviceis the device identifier for the new, current X keyboard device,

but no implementation-independent guarantee can be madeoidbalgtviceold device

may be identical tdevice(an implementor is permitted to reuse the device specifier when
the device changes); or it may be different. Noterdt majorandreq_minorbeing zero

do not necessarily mean that the physical keyboard device has changed; rather, they only
imply a spontaneous change outside of software control (Some systems have keyboards
which can change personality at the press of a key.).

If the keyboard change is the result of an X Input ExtenSl@amgeKeyboardDevice
requestreq_majorcontains the input extension major opcode,ragd minorcontains the
input extension request number ¥0rChangeKeyboardDevice . In this casegeviceand
old_deviceare different, wittdevicebeing the identifier for the new, current X keyboard
device, anald_devicebeing the identifier for the former device.

If the keyboard change is the result oP&ibGetKeyboardByNantanction call, which
generates ak_kbGetKbdByName requestreq_majorcontains théxkb extension base

event codgsee section 2.4), amedg_minorcontains the event code for the Xkb extension
requesiX_kbGetKbdByName. devicecontains the device identifier for the new device, but
nothing definitive can be said fold_deviceit may be identical tdevice or it may be
different, depending on the implementation.

February 5, 1996 Library Version 1.0/Document Revision 1.0 188

The X Keyboard Extension 20 Server Database of Keyboard Components

20

Server Database of Keyboard Components

The X server maintains a database of keyboard components, identified by component
type. The database contains all the information necessary to build a complete keyboard
description for a particular device, as well as to assemble partial descriptions. Table 20.1
identifies the component types and the type of information they contain.

Table 20.1 Server Database Keyboard Components

_(E;F;Zponent Component Primary Contents May also contain
Keymap Complete keyboard description

Normally assembled using a complete
component from each of the other types

Keycodes Symbolic name for each key Aliases for some keys
Minimum and maximum legal keycodeSymbolic names for indicators
Description of indicators physically
present
Types Key types Real maodifier bindings and symbolic
names for some virtual modifiers

Compatibility Rules used to assign actions to keysyms Maps for some indicators
Real modifier bindings and symbolic
names for some virtual modifiers

Symbols Symbol mapping for keyboard keys Explicit actions and behaviors for some
Modifier mapping keys
Symbolic names for groups Real modifier bindings and symbolic
names for some virtual modifiers
Geometry Layout of the keyboard Aliases for some keys; overrides key-

codes component aliases

Symbolic names for some indicators
Description of indicators physically
present

While a keymap is a database entry for a complete keyboard description, and therefore
logically different from the individual component database entries, the rules for process-
ing keymap entries are identical to those for the individual components. In the discussion
which follows, the term component is used to refer to either individual components or a
keymap.

There may be multiple entries for each of the component types. An entry may be either
completeor partial. Partial entries describe only a piece of the corresponding keyboard
component, and are designed to be combined with other entries of the same type to form a
complete entry.

For example, a partial symbols map might describe the differences between a common
ASCII keyboard and some national layout. Such a partial map is not useful on its own
because it does not include those symbols that are the same on both the ASCII and
national layouts (such as function keys). On the other hand, this partial map can be used to
configureany ASCII keyboard to use a national layout.

When a keyboard description is built, the components are processed in the order in which
they appear in Table 20.1; later definitions override earlier ones.

February 5, 1996 Library Version 1.0/Document Revision 1.0 189

The X Keyboard Extension 20 Server Database of Keyboard Components

20.1

20.2

Component Names

Component names have the foratass(membet)whereclassdescribes a subset of the
available components for a particular type and the optioeatbetidentifies a specific
component from that subset. For example, the name “atlantis(acme)” for a symbols com-
ponent might specify the symbols used for the atlantis national keyboard layout by the
vendor “acme.” Each class has an optiatethultmember — references which specify a
class but not a member refer to the default member of the class, if one exists. Xkb places
no constraints on the interpretation of the class and member names used in component
names.

Theclassandmembemames are both specified using characters from the Latin-1 charac-
ter set. Xkb implementations must accept all alphanumeric characters, minus (*-') and
underscore (‘*_’) in class or member names, and must not accept parentheses, plus, vertical
bar, percent sign, asterisk, question mark or white space. The use of other characters is
implementation-dependent.

Listing the Known Keyboard Components

You may ask the server for a list of components for one or more component types. The
request takes the form of a set of patterns, one pattern for each of the component types,
including a pattern for the complete keyboard description. To obtain this listkbdlist-
Components

XkbComponentListPtKkbListComponents(dpy, device_spegtrns, max_inou

Display * dpy; [* connection to X server */

unsigned int device_spec /* device id, orXkbUseCoreKbd */
XkbComponentNamesPtr ptrns /* namelist for components of interest */
int * max_inout /* max # returned names, # left over */

XkbListComponentgueries the server for a list of component names matching the pat-
terns specified iptrns. It waits for a reply and returns the matching component names in
anXkbComponentListRec structure. When you are done using the structure you should
free it usingXkbFreeComponentLisievice _spemdicates a particular device in which

the caller is interested. A server is allowed (but not required) to restrict its reply to por-
tions of the database which are relevant for that particular device.

ptrnsis a pointer to aXkbComponentNamesRec, described below. Each of the fields in
ptrnscontains a pattern naming the components of interest. Each of the patterns is com-
posed of characters from the [&@inl encoding, but can contain only parentheses, the
wildcard characters?” and *’, and characters permitted in a component class or member
name (see section 20.1). A pattern mayWbieL, in which case no components for that

type is returned. Pattern matches with component names are case sensitivewiltie *

card matches any single character except a left or right parenthests;whidcard

matches any number of characters except a left or right parenthesis. If an implementation
allows additional characters in a component class or member name other than those
required by the Xkb extension (see section 20.1), the result of comparing one of the addi-
tional characters to either of the wildcard characters is implementation dependant.

If a pattern contains illegal characters, the illegal characters are ignored. The matching
process is carried out as if the illegal characters were omitted from the pattern.

max_inouis used to throttle the amount of data passed to and from the server. On input, it
specifies the maximum number of names to be returned (the total number of names in all

February 5, 1996 Library Version 1.0/Document Revision 1.0 190

The X Keyboard Extension 20 Server Database of Keyboard Components

20.3

component categories). Upon return frgibListComponentsnax_inoutcontains the
number of names which matched the request but were not returned because of the limit.

The component name patterns used to describe the request are pX&bedstCompo-
nentsusing anXkbComponentNamesRec structure. This structure has no special alloca-
tion constraints or inter-relationships with other structures, allocate and free this structure
using standardhallocandfree calls or their equivalent:

typedef struct _XkbComponentNames {

char * keymap; /* keymap names */

char * keycodes; /* keycode names */

char * types; /* type names */

char * compat; /* compatibility map names */
char * symbols; /* symbol names */

char * geometry; [* geometry names */

} XkbComponentNamesRec*XkbComponentNamesPtr;
XkbListComponenteturns a pointer to axkbComponentListRec
typedef struct _XkbComponentList {

int num_keymaps; /* number of entries in keymap */
int num_keycodes; /* number of entries in keycodes */
int num_types; /* number of entries in types */

int num_compat; /* number of entries in compat */
int num_symbols; /* number of entries in symbols */
int num_geometry; /* number of entries in geometry;
XkbComponentNamePtr keymap; [* keymap names */
XkbComponentNamePtr keycodes; /* keycode names */
XkbComponentNamePtr types; [* type names */
XkbComponentNamePtr compat; [* compatibility map names */
XkbComponentNamePtr ~ symbols; [* symbol names */
XkbComponentNamePtr geometry; /* geometry names */

} XkbComponentListRec, *XkbComponentListPtr;

typedef struct _XkbComponentName {
unsigned short flags; /* hints regarding component name */
char * name; /* name of component */

} XkbComponentNameRe¢ *XkbComponentNamePtr;

Note that the structure used to specify patterns on inputA&lEomponentNamesRec,
and that used to hold the individual component names upon returixXkb@omponent-
NameRec(no trailing ‘s’ in Name).

When you are done using the structure returnedkiniistComponentdgree it using
XkbFreeComponentList

void XkbFreeComponentList(list)
XkbComponentListPtr list; [* pointer tdkbComponentListRec to free */
Component Hints

A set of flags is associated with each component; these flags provide additional hints
about the component’s use. These hints are designated by bit masks in the flags field of
the XkbComponentNameRec structures contained in tibComponentListRec

February 5, 1996 Library Version 1.0/Document Revision 1.0 191

The X Keyboard Extension 20 Server Database of Keyboard Components

returned fromXkbListComponents . The least significant byte of the flags field has the
same meaning for all types of keyboard components; the interpretation of the most signif-
icant byte is dependent on the type of component. The flags bits are defined in Table 20.2.
The symbols hints in Table 20.2 only apply to partial symbols components (those with
XkbLC Partial also set); full symbols components are assumed to specify all of the
pieces.

The alphanumeric, modifier, keypad or function keys symbols hints should describe the
primary intent of the component designer and should not be simply an exhaustive list of
the kinds of keys that are affected. For example, national keyboard layouts affect prima-
rily alphanumeric keys, but many affect a few modifier keys as well; such mappings
should set only th&kbLC_Alphanumerickeys hint. In general, symbols components
should set only one of the four flag&kbLC_AlternateGroup may be combined with

any of the other flags).

Table 20.2 XkbComponentNameRec flags bits
Component Component Hints

Type (flags) Meaning Value

All ComponentsXkbLC_Hidden Do not present to user (1L<<0)
XkbLC_Default Default member of class (1L<<1)
XkbLC_Partial Partial component (1L<<2)

Keymap none

Keycodes none

Types none

Compatibility none

Symbols XkbLC _AlphanumericKeys Bindings primarily for alphanumeric (1L<<8)

keyboard section
XkbLC_ModifierKeys Bindings primarily for modifier keys (1L<<9)
XkbLC_KeypadKeys Eindings primarily for numeric keypa@d L<<10)
eys

XkbLC_FunctionKeys Bindings primarily for function keys (1L<<11)
XkbLC_AlternateGroup Bindings for an alternate group (1L<<12)

Geometry none

20.4 Building a Keyboard Description using the Server Database

A client may request that the server fetch one or more components from its database, and
use those components to build a new server keyboard description. The new keyboard
description may be built from scratch, or it may be built starting with the current keyboard
description for a particular device. Once the keyboard description is built, all or part of it
may be returned to the client. The parts returned to the client need not include all of the
parts used to build the description. At the time it requests the server to build a new key-
board description, a client may also request that the server use the new description inter-
nally to replace the current keyboard description for a specific device, in which case the
behavior of the device changes accordingly.

February 5, 1996 Library Version 1.0/Document Revision 1.0 192

The X Keyboard Extension 20 Server Database of Keyboard Components

To build a new keyboard description from a set of named components, and to optionally
have the server use the resulting description to replace an active oXé&pcaditKey-

boardByName

XkbDescPtiXkbGetKeyboardByName(dpy, device_spemameswant need load)
Display * dpy, [* connection to X server */
unsigned int device_spec /* device id, orXkbUseCoreKbd */
XkbComponentNamesPtrnames /* names of components to fetch */
unsigned int want [* desired structures in returned record */
unsigned int need /* mandatory structures in returned record */
Bool load, /* True =>load intodevice_spet/

namescontains a set of expressions describing the keyboard components the server should
use to build the new keyboard descriptmantandneedare bit fields describing the parts

of the resulting keyboard description which should be present in the reXkiviees-

CRec.

The individual fields imamesarecomponent expressiosemposed of keyboard compo-
nent names (no wildcarding as may be usexkinListComponen)sthe special compo-
nent name symbol ‘%’, and the special operator charaeteasnd ‘| . A component
expression is parsed left to right, as follows:

« The special component nameomputed ” may be used ikkeycodes component
expressions, and refers to a component consisting of a set of keycodes computed auto-
matically by the server as needed.

« The special component namegahonical " may be used itypes component
expressions, and refers to a partial component defining the four standard key types:
ALPHABETIC ONE_LEVEL TWO_LEVElandKEYPAD

* The special component nant¥ tefers to the keyboard description for the device spec-
ified indevice_speor the keymap names component. If a keymap names component
is specified which does not begin with ‘+' or ‘| and does not conjrttien ‘%
refers to the description generated by the keymap names component. Otherwise, it
refers to the keyboard description thevice_spec

« The ‘+ operator specifies that the following component showdrridethe currently
assembled description; any definitions that are present in both components are taken
from the second.

« The | ' operator specifies that the next specified component shaigithenthe cur-
rently assembled description; any definitions that are present in both components are
taken from the first.

 If the component expression begins with an operator, a leddimgimplied.

» If any unknown or illegal characters appear anywhere in the expression, the entire
expression is invalid and is ignored.

For example, ihames->symbolsontained the expression “+de”, it specifies that the
default member of the “de” class of symbols should be applied to the current keyboard
mapping, overriding any existing definitions (It could also be written “+de(default)”.).

Here is a slightly more involved example: the expression
“acme(ascii)+de(basic)|is09995-3" constructs a German (de) mapping for the ASCII key-
board supplied by the “acme” vendor. The new definition begins with the symbols for the
ASCII keyboard for Acmeacme(ascii), overrides them with definitions for the basic
German keyboardig(basic) and then applies the definitions from the default is09995-3
keyboard 609995-3 to any undefined keys or groups of keys (part three of the is09995

February 5, 1996 Library Version 1.0/Document Revision 1.0 193

The X Keyboard Extension 20 Server Database of Keyboard Components

standard defines a common set of bindings for the secondary group, but allows national
layouts to override those definitions where necessary).

Note The interpretation of the above expression components (acme, ascii, de, basic,
i509995-3) is not defined by Xkb; only the operations and their ordering are.

Note that the presence of a keynmgmescomponent which does not contata (either

explicit or implied by virtue of an expression starting with an operator) indicates a
description which is independent of the keyboard description for the device specified in
device_specThe same is true of requests in which the keymap names component is empty
and all five other names components contain expressions void of refereriées to °
Requests of this form allow you to deal with keyboard definitions independent of any
actual device.

The server parses all néMJLL fields innamesand uses them to build a keyboard descrip-
tion. However, before parsing the expressionsmesthe server ORs the bitswant
andneedtogether and examines the result in relationship to the expressitanas

Table 20.3 identifies the components which are required for each of the possible bits in
wantor need If a required component has not been specified indngesstructure (the
corresponding field iBIULL), the server substitutes the expressih fesulting in the
component values being taken frolevice_spedn addition, ifload is True , the server
modifiesnamesf necessary (again using #“entry) to insure all of the following fields

are nonNULL: types keycodessymbols andcompat

Table 20.3 want and need mask bits and required names components

want or need mask bit Required names Components value
XkbGBN_ TypesMask Types (1L<<0)
XkbGBN_CompatMapMask Compat (1L<<1)
XkbGBN_ClientSymbolsMask Types + Symbols + Keycodes (1L<<2)
XkbGBN_ServerSymbolsMask Types + Symbols + Keycodes (1L<<3)
XkbGBN_SymbolsMask Symbols (1L<<1)
XkbGBN_IndicatorMapMask Compat (1L<<4)
XkbGBN_KeyNamesMask Keycodes (1L<<b)
XkbGBN_GeometryMask Geometry (1L<<6)
XkbGBN_OtherNamesMask Types + Symbols + Keycodes H1L<<7)
Compat + Geometry
XkbGBN_AllComponentsMask (Oxff)

needspecifies a set of keyboard components which the server must be able to resolve in
order forXkbGetKeyboardByNamnie succeed; if any of the components specifieteed
cannot be successfully resolvetkbGetKeyboardByNanfails.

wantspecifies a set of keyboard components which the server should attempt to resolve,
but which are not mandatory. If the server is unable to resolve any of these components,
XkbGetKeyboardByNanstill succeeds. Bits specifiedwantwhich are also specified in
needhave no effect in the contextwant

If load is True , the server updates its keyboard descriptiomémce speto match the
result of the keyboard description just built. If loadrédse , the server’s description for
devicedevice_specs not updated. In all cases, the parts specifiegdntandneedfrom
the just-built keyboard description are returned.

February 5, 1996 Library Version 1.0/Document Revision 1.0 194

The X Keyboard Extension 20 Server Database of Keyboard Components

Thenamesstructure in aiXkbDescRec keyboard description record (see Chapter 18)
contains one field for each of the five component types used to build a keyboard descrip-
tion. When a keyboard description is built from a set of database components, the corre-
sponding fields in thimamesstructure are set to match the expressions used to build the
component.

The entire process of building a new keyboard description from the server database of
components and returning all or part of it is diagrammed in Figure 20.1:

Augment names to
supply component
names required by
want and need but ng
supplied in request

@ False

*True

—

Initial Request

Augment names to
gz\r/TI]ZZ_SPecl supply required com- Keyboard
<#——® | ponent names not sup- Component
want \ plied in request
heed % Database
load '\ '\

Build keyboard / New Keyboard

description from Descrin
expressions in - escription

names (Temporary)

False @

True

Regﬁsg Eg}\//kl)coea_r:(sjpec Keyboard DescriptioT
description with newly for device_spec
built description

Build keyboard
description for clientf ———— pm | Keyboard

by extracting struc- Description
tures specified in want returned to
and need Client

Figure 20.1 Building a new keyboard description from the server database

The information returned to the client in tkikoDescRec is essentially the result of a
series of calls to extract information from a fictitious device whose description matches

February 5, 1996 Library Version 1.0/Document Revision 1.0 195

The X Keyboard Extension 20 Server Database of Keyboard Components

the one just built. The calls corresponding to each of the mask bits are summarized below,
together with thexkbDescRec components that are filled in.

Table 20.4 XkbDescRec components returned for values of want & need s

Request (want+need) Fills in Xkb components Equivalent Function Call
XkbGBN_ TypesMask map.types XkbGetUpdatedMap(dpy, XkbTypesMask, Xkb)
XkbGBN_ServerSymbolsMask server XkbGetUpdatedMap(dpy, XkbAllClientinfoMask, Xkb)
XkbGBN_ClientSymbolsMask map, including map.types XkbGetUpdatedMap(dpy, XkbAllServerinfoMask, Xkb)
XkbGBN _IndicatorMaps indicators XkbGetindicatorMap(dpy, XkbAllindicators, Xkb)
XkbGBN_CompatMapMask compat XkbGetCompatMap(dpy, XkbAllCompatMask, Xkb)
XkbGBN_GeometryMask geom XkbGetGeometry(dpy, Xkb)
XkbGBN_KeyNamesMask names.keys XkbGetNames(dpyKkbKeyNamesMask |
names.key_aliases XkbKeyAliasesMaskXkb)
XkbGBN_OtherNamesMask names.keycodes XkbGetNames(dpy, XkbAlINamesMask &
names.geometry ~(XkbKeyNamesMask | XkbKeyAliasesMgsk
names.symbols Xkb)

names.types
map.types[*].lvl_names[*]
names.compat
names.vmods
names.indicators
names.groups
names.radio_groups
names.phys_symbols

There is no way to determine which components specifiadir (but not inneed were
actually fetched, other than breaking the call into successive cXlkbeetKeyboard-
ByNameand specifying individual components.

XkbGetKeyboardByNanmaways setsnin_key codandmax_key codm the returned
XkbDescRec structure.

XkbGetKeyboardByName synchronous; it sends the request to the server to build a new
keyboard description, and waits for the reply. If successful, the return value NUhbn-
XkbGetKeyboardByNangenerates BadMatch protocol error if errors are encountered
when building the keyboard description.

If you simply want to obtain information about the current keyboard device, rather than
generating a new keyboard description from elements in the server databadd;Gel-
Keyboard(see section 6.2 on page 29).

XkbDescPtiXkbGetKeyboard (dpy which device_spéc

Display * dpy; /* connection to X server */
unsigned int which /* mask of components ofkbDescRec of interest */
unsigned int device_spec [* device id */

XkbGetKeyboards used to read the current description for one or more components of a
keyboard device. It call&kbGetKeyboardByNanas follows:

XkbGetKeyboardByNar(upy, device_spegdNULL, which, which, False).

February 5, 1996 Library Version 1.0/Document Revision 1.0 196

The X Keyboard Extension 21 Attaching Xkb Actions to X Input Extension

21

Attaching Xkb Actions to X Input Extension Devices

The X input extension allows an X server to support multiple keyboards, as well as other
input devices, in addition to the core X keyboard and pointer. The input extension catego-
rizes devices by grouping them into classes. Keyboards, and other input devices with
keys, are classified &eyClass devices by the input extension. Other types of devices
supported by the input extension include, but are not limited to: mice, tablets, touch-
screens, barcode readers, button boxes, trackballs, identifier devices, data gloves, and eye
trackers. Xkb provides additional control over all X input extension devices, whether they
areKeyClass devices or not, as well as the core keyboard and pointer.

If an X server implements support for both the input extension and Xkb, the server imple-
mentor determines whether interaction between Xkb and the input extension is allowed.
Implementors are free to restrict the effects of Xkb to only the core X keyboard device or
allow interaction between Xkb and the input extension.

Several types of interaction between Xkb and the input extension are defined by Xkb.
Some or all may be allowed by the X server implementation.

Regardless of whether the server allows interaction between Xkb and the input extension,
the following access is provided:

» Xkb functionality for the core X keyboard device and its mapping is accessed via the
functions described in the other chapters of this specification.

» Xkb functionality for the core X pointer device is accessed vixXiigsetDevicelnfo
andXkbSetDevicelnféunctions described in this chapter.

If all types of interaction are allowed between Xkb and the input extension, the following
additional access is provided:

 If allowed, Xkb functionality for additiondfeyClass devices supported by the input
extension is accessed via those same functions.

 If allowed, Xkb functionality for norikeyClass devices supported by the input exten-
sion is also accessed via tkbGetDevicelnfand XkbSetDevicelnféunctions
described in this chapter.

Each device has an X Input Extension device id. Each device may have several classes of
feedback. For example, there are two types of feedbacks that can generate bells: bell feed-
back and keyboard feedbade{FeedbackClass andKbdFeedbackClass). A

device can have more than one feedback of each type; the feedback id identifies the partic-
ular feedback within its class.

A keyboard feedback has:

» auto-repeat status (global and per key)
* 32leds
e abell

An indicator feedback has:

* upto 32leds

If the input extension is present and the server allows interaction between the input exten-
sion and Xkb, then the core keyboard, the core keyboard indicators, and the core keyboard
bells may each be addressed using an appropriate device spec, class, and id. The constant
XkbXIDfittD ~ may be used as the device id to specify the core keyboard indicators for

the core indicator feedback. The particular device id corresponding to the core keyboard

February 5, 1996 Library Version 1.0/Document Revision 1.0 197

The X Keyboard Extension 21 Attaching Xkb Actions to X Input Extension

feedback and the core indicator feedback may be obtained by ¢cétln@etDevicelnfo
and specifyingkkbUseCoreKbd as thedevice _spedhe values will be returned in
dfit_kbd_idanddflt_led_id

If the server does not allow Xkb access to input extertésylass devices, attempts to
use Xkb requests with those devices fail withaalKeyboard error. Attempts to access
nonKeyClass input extension devices vikbGetDevicelnfandXkbSetDevicelnftail
silently if Xkb access to those devices is not supported by the X server.

21.1 XkbDevicelnfoRec

Information about X Input Extension devices is transferred between a client program and
the Xkb extension in akkbDevicelnfoRec structure:

typedef struct {
char * name; I* name for device */
Atom type; [* name for class of devices */
unsigned short device_spec; /* device of interest */
Bool has_own_state;/frue =>this device has its own state */
unsigned short supported; /* bits indicating supported capabilities */
unsigned short unsupported; /* bits indicating unsupported capabilities */
unsigned short num_btns; /* number of entriebtim_acts*/
XkbAction * btn_acts; [* button actions */
unsigned short sz_leds; /* total number of entries in leds vector */
unsigned short num_leds; /* number of valid entries in leds vector */
unsigned short dfit_kbd_fb; /* input extension id of default (core kbd) indicator */
unsigned short dflt_led_fb; /* input extension id of default indicator feedback */
XkbDeviceLedInfoPtr leds; /* LED descriptions */

} XkbDevicelnfoReg *XkbDevicelnfoPtr;

typedef struct {
unsigned short led_class; /* class for this LED device*/
unsigned short led_id; /* id for this LED device */
unsigned int phys_indicators; /* bits for which leds physically present */
unsigned int maps_present; /* bits for which leds have map&ps*/
unsigned int names_present; /* bits for which leds aramest/
unsigned int state; /* 1 bit => corresponding led is on */
Atom names[XkbNumIndicators]; [* names for leds */
XkbIndicatorMapRec maps; /* indicator maps for each led */

} XkbDeviceLedInfoReg *XkbDevicelLedInfoPtr;

Thetypefield is a registered symbolic name for a class of devices (for example, “TABLET"). If a
device is a keyboard (that is, is a membefeyClass), it has its own state, afés_own_state

is True . If has_own_statés False |, the state of the core keyboard is usEae supportedand
unsupportedields are masks where each bit indicates a capability. The meaning of the
mask bits are listed in Table 21.1 below, together with the fields Xibideviceln-

foRec structure which are associated with the capability represented by each bit. The
same bits are used to indicate the specific information desired in many of the functions
described subsequently in this section.

February 5, 1996 Library Version 1.0/Document Revision 1.0 198

The X Keyboard Extension

21 Attaching Xkb Actions to X Input Extension

Table 21.1 XkbDevicelnfoRec Mask Bits

XkaeviceInfoReg/alue

Name Fields Effected

Capability If Set

XkbXI_KeyboardsMask

(1L << 0) Clients can use all Xkb requests and

events withKeyClass devices sup-
ported by the input device exten-
sion.

XkbXI_ButtonActionsMask num_btns (1L <<1) Clients can assign key actions to
btn_acts buttons on norikeyClass input
extension devices.
XkbXI_IndicatorNamesMask leds->names (1L <<2) Clients can assign hames to indica-
tors on norKeyClass input exten-
sion devices.
XkbXI_IndicatorMapsMask leds->maps (1L <<3) Clients can assign indicator maps to
indicators on norikeyClass input
extension devices.
XkbXI_IndicatorStateMask leds->state (1L <<4) Clients can request the status of
indicators on norikeyClass input
extension devices.
XkbXI_IndicatorsMask sz_leds (0x1c) XkbXI_IndicatorNamesMask |
num_leds XkbXI_IndicatorMapsMask |
leds->* XkbXI_IndicatorStateMask
XkbXI_UnsupportedFeaturesMask unsupported (1L <<15)

XkbXI_AllDeviceFeaturesMask Those selected byOx1e)

Value column masks
Those selected by(0x1f)
Value column masks

Those selected by (0x801f)
Value column masks

XkbXI_AllFeaturesMask

XkbXI_AllDetailsMask

XkbXI_IndicatorsMask |
XkbSI_ButtonActionsMask

XkbSI_AllDeviceFeaturesMask |
XkbSI_KeyboardsMask

XkbXI_AllFeaturesMask |
XkbXI_UnsupportedFeaturesMask

Thename type has_own_statesupported andunsupportedields are always filled in when a

valid reply is returned from the server involvingXkibDevicelnfoRec

. All of the other

fields are modified only if the particular function asks for them.

21.2

Querying Xkb Features for Non-KeyClass Input Extension Devices

To determine whether the X server allows Xkb access to particular capabilities of input
devices other than the core X keyboard, or to determine the status of indicator maps, indi-
cator names or button actions on a K@yClass extension device, calkbGetDevice-

Info.

XkbDevicelnfoPtrXkbGetDevicelnfo(dpy, which, device _spec, ind_class, ind _id

Display * dpy, [* connection to X server */

unsigned int which /* mask indicating information to return */
unsigned int device_spec /* device id, orXkbUseCoreKbd */
unsigned int ind_class [* feedback class for indicator requests */
unsigned int ind_id; /* feedback id for indicator requests */

XkbGetDevicelnfoeturns information about the input device specifiedéyice spec
Unlike thedevice_speparameter of most Xkb functiordgvice_spedoes not need to be

February 5, 1996

Library Version 1.0/Document Revision 1.0

199

The X Keyboard Extension 21 Attaching Xkb Actions to X Input Extension

a keyboard device. It must, however, indicate either the core keyboard or a valid X Input
Extension device.

Thewhichparameter is a mask specifying optional information to be returned. It is an
inclusive OR of one or more of the values from Table 21.1, and causes the returned
XkbDevicelnfoRec to contain values for the corresponding fields specified in the table.

The XkbDevicelnfoRec returned byxkbGetDevicelnfalways has values folame
(may be a null string, “")type supportedunsupporteghas _own_statalflt_kbd fd and
dflt_kbd_fb Other fields are filled in as specified which

Upon return, thesupportedield will be set to the inclusive OR of zero or more bits from
Table 21.1; each bit set indicates an optional Xkb extension device feature supported by
the server implementation, and a client may modify the associated behavior.

If the XkbButtonActionsMask bit is set inwhich, the XkbDevicelnfoRec returned
will have the button action®in_actsfield) filled in for all buttons.

If whichincludes one of the bits KkbXI_IndicatorsMask , the feedback class of
the indicators must be specifiedimd_class and the feedback id of the indicators must be
specified inind_id. If the request does not include any of the bits in
XkbXI_IndicatorsMask , theind_classandind_id parameters are ignored. The class
and id can be obtained via the input device extensiastinputDevicesequest.

If any of theXkbXI_IndicatorsMask bits are set imvhich, the XkbDevicelnfoRec
returned will have filled in the portions of theglsstructure corresponding to the indicator
feedback identified bind_classandind_id. Theledsvector of thexkbDevicelnfoRec

is allocated if necessary asd ledsandnum_leddilled in. Theled_classled_idand
phys_indicatordields of theledsentry corresponding tind_classandind_id are always
filled in. If which containsxkbXI_IndicatorNamesMask , thenames_preserand
namedields of theledsstructure corresponding ted_classandind_id are returned. If
whichcontainsxkbXI|_IndicatorStateMask , the correspondinstatefield; is updated.

If which containsxkbXI_IndicatorMapsMask , themaps_preserandmapsfields are
updated.

Xkb provides convenience functions to request subsets of the information available via
XkbGetDevicelnfoThese convenience functions mirror some of the mask bits. The func-
tions all take arxXkbDevicelnfoPtr as an input argument, and operate on the X Input
Extension device specified by tHevice_speéeld of the structure. Only the parts of the
structure indicated in the function description are updatedXKibievicelnfo Rec

structure used in the function call can be obtained by calligsetDevicelnfoor can be
allocated by callingKkbAllocDevicelnfdsee section 21.3).

These convenience functions are described below.

To query the button actions associated with an X Input Extension devicekhGetDe-

viceButtonActions.

StatusXkbGetDeviceButtonActiongdpy, device_info, all_buttons, first_button, num_buijtons
Display * dpy, [* connection to X server */
XkbDevicelnfoPtr device_infp /* structure to update with results */
Bool all_buttons /* True => get information for all buttons */
unsigned int first_button /* number of first button for which info desired */
unsigned int num_buttons /* number of buttons for which info is desired */

February 5, 1996 Library Version 1.0/Document Revision 1.0 200

The X Keyboard Extension 21 Attaching Xkb Actions to X Input Extension

XkbGetDeviceButtonActiompieries the server for the desired button information for the
device indicated by th@evice speéeld of device_infpand waits for a reply. If success-
ful, XkbGetDeviceButtonActiormackfills the button action®in_actsfield of

device_infd for only the requested buttons, updatesdme type supported andunsup-
portedfields, and returnSuccess .

all_buttons first_buttonandnum_buttonspecify the device buttons for which actions
should be returned. Settiad) buttonsto True requests actions for all device buttons; if
all_buttonsis False |, first_buttonandnum_buttonspecify a range of buttons for which
actions are requested.

If a compatible version of Xkb is not available in the server or the Xkb extension has not
been properly initialized{kbGetDeviceButtonActiomsturnsBadAccess . If allocation

errors occur, 8adAlloc status is returned. If the specified device
(device_infe>device_speds invalid, aBadKeyboard status is returned. If the device

has no buttons, BadMatch status is returned. first_buttonandnum_buttonspecify

illegal buttons, @8adValue status is returned.

To query the indicator names, maps, and state associated with an LED feedback of an
input extension device, ud&kbGetDevicelLedInfo.

StatusXkbGetDevicelLedInfo(dpy, device _info, led_class, led_id, which

Display * dpy; [* connection to X server */

XkbDevicelnfoPtr device_infop /* structure to update with results */

unsigned int led_class /* LED feedback class assigned by input extension */
unsigned int led_id /* LED feedback id assigned by input extension */
unsigned int which /* mask indicating desired information */

XkbGetDevicelLedInfqueries the server for the desired led information for the feedback
specified byled_classandled_idfor the X input extension device indicated by
device_speedevice infpand waits for a reply. If successfkbGetDeviceledInfo
backfills the relevant fields afevice infoas determined byhichwith the results and
returnsSuccess . Valid values fowhichare the inclusive OR of any of
XkbXI_IndicatorNamesMask , XkbXI_IndicatorMapsMask , and
XkbXI_IndicatorStateMask

The fields ofdevice_infonhich are filled in when this request succeedshame, type,
supportedandunsupportedand portions of theedsstructure corresponding ked_class
andled_idas indicated by the bits setwhich Thedevice_info->ledwvector is allocated
if necessary ansz_ledsandnum_leddilled in. Theled_classled_idandphys_indicators
fields of thedevice_infe>ledsentry corresponding ted_classandled_id are always
filled in.

If which containsxkbXI_IndicatorNamesMask , thenames_preser@ndnamedields
of thedevice_infe>ledsstructure corresponding ked_classandled_idare updated, if
which containsXkbXI_IndicatorStateMask , the correspondingtatefield is updated,
and ifwhich containsXkbXI_IndicatorMapsMask , themaps_preserandmapsfields
are updated.

If a compatible version of Xkb is not available in the server or the Xkb extension has not
been properly initialized{kbGetDeviceLedInfeeturnsBadAccess . If allocation errors
occur, a BadAlloc status is returned. If the device has no indicatBegiMatch error is
returned. IfledClassor ledID have illegal values, BadValue error is returned. If they

February 5, 1996 Library Version 1.0/Document Revision 1.0 201

The X Keyboard Extension 21 Attaching Xkb Actions to X Input Extension

have legal values but do not specify a feedback that contains LEDs and is associated with
the specified device,BadMatch error is returned.

21.3 Allocating, Initializing, and Freeing the XkbDevicelnfoRec Structure

Obtain anXkbDevicelnfoRec structure by callingckkbGetDevicelnfoor by calling
XkbAllocDevicelnfo

XkbDevicelnfoPtrXkbAllocDevicelnfo(device_spec, n_buttons, sz_leds

unsigned int device_spec /* device id with which structure will be used */
unsigned int n_buttons /* number of button actions to allocate space for*/
unsigned int sz_leds /* number of LED feedbacks to allocate space for */

XkbAllocDevicelnfallocates space for atkbDevicelnfoRec structure and initializes
that structure’slevice_spefield with the device id specified lmevice_spedf n_buttons

is non-zeron_buttonsXkbActions are linked into theXxkbDevicelnfoRec structure
and initialized to zero. I$z_ledds nonzerosz_leds<kbDeviceLedinfoRec structures
are also allocated and linked into tidbDevicelnfoRec structure. If you request
XkbDeviceLedinfoRec structures be allocated using this request, you must initialize
them explicitly.

Obtain anXkbDeviceLedIinfoRec structure by callingkkbAllocDevicelLedInfo

StatusXkbAllocDevicelLedInfo(devi, num_needéd
XkbDevicelnfoPtr device_infp /* structure in which to allocate led space */
int num_needed /* number of indicators to allocate space for */

XkbAllocDevicelLedInfallocates space for atkbDeviceLedIinfoRec ~ and places it in
device_infolf num_needed nonzeronum_neededkbindicatorMapRec structures
are also allocated and linked into tieoDeviceLedinfoRec structure. If you request
XkbindicatorMapRec structures be allocated using this request, you must initialize
them explicitly. All other fields are initialized to zero.

To initialize anXkbDevicelLedInfoRec structure, calKkkbAddDevicelLedInfo

XkbDevicelLedInfoPtixkbAddDevicelLedInfo(device_info, led_class, led)id
XkbDevicelnfoPtr device_infp /* structure in which to add led info */
unsigned int led_class I* input extension class for LED device of interest */
unsigned int led_id /* input extension id for LED device of interest */

XkbAddDeviceLedInfbrst checks to see if an entry matchiad_classandled_id

already exists in thdevice_info->ledsrray. If it finds a matching entry, it returns a
pointer to that entry. Otherwise, it checks to be sure there is at least one empty entry in
device_infe>leds and extends it if there is not enough room. It then increments
device_infe>num_ledsand fills in the next available entry device_infe>ledswith
led_classandled_id

If successfulXkbAddDeviceLedInfeeturns a pointer to thékbDeviceledinfoRec
structure which was initialized. If unable to allocate sufficient storage dewite_info
points to an invalikkbDevicelnfoRec structure, or ifed_classorled_idare inappro-
priate,XkbAddDeviceLedInfoeturnsNULL

February 5, 1996 Library Version 1.0/Document Revision 1.0 202

The X Keyboard Extension 21 Attaching Xkb Actions to X Input Extension

21.4

To allocate additional space for button actions iXi@sDevicelnfoRec structure, call
XkbResizeDeviceButtonActions

StatusXkbResizeDeviceButtonActiongdevice_info, new_total
XkbDevicelnfoPtr device_info /* structure in which to allocate button actions */
unsigned int new_totaj /* new total number of button actions needed */

XkbResizeDeviceButtarallocates space, if necessary, to make sure there is room for a
total ofnew_totalbutton actions in thdevice_infostructure. Any new entries allocated

are zeroed. If successfidkbResizeDeviceButtoaturnsSuccess . If new_totalis zero,

all button actions are deletatkvice infe>num_btngs set to zero, and
device_infe>btn_actss set toNULL If device_infds invalid ornew_totalis greater than
255,BadValue is returned. If a memory allocation failure occurBadAlloc is

returned.

To free anXkbDevicelnfoRec structure, calKkbFreeDevicelnfo

void XkbFreeDevicelnfo(device_info, which, free_all
XkbDevicelnfoPtr device_info /* pointer toXkbDevicelnfoRec in which to free items */
unsigned int whichy [* mask of components afevice_infao free */
Bool free_alt [* True => free everything, including device_info */

If free_allis True , theXkbFreeDevicelnfdrees all components device_infaand the
XkbDevicelnfoRec structure pointed to bgevice_infatself. If free_allis False , the
value ofwhichdetermines which subcomponents are freddchis an inclusive OR of
one or more of the values from Table 21.1 on page 2®hith contains

XkbXI_ButtonActionsMask , all button actions associated withvice _infoare
freed,device_infe>btn_actsis set taNULL, anddevice_infe>num_btngs set to zero. If
which contains all bits itrKkbXI_IndicatorsMask , all XkbDeviceLedInfoRec

structures associated witlevice_infaare freedgevice_infe>ledsis set toNULL, and
device_infe>sz_ledsanddevice infe>num_ledsare set to zero. ihichcontains
XkbXI_IndicatorMapsMask , all indicator maps associated widhbvice_infoare

cleared, but the number of leds and the leds structures themselves are presghieldl. If
containsXkbXI_IndicatorNamesMask , all indicator names associated with

device_info are cleared but the number of leds and the leds structures themselves are pre-
served. Ifwhich containsXkbXI_IndicatorStateMask , the indicator state associ-

ated with thadevice infdeds are set to zeros but the number of leds and the leds

structures themselves are preserved.

Setting Xkb Features for Non-KeyClass Input Extension Devices

The Xkb extension allows clients to assign any key action to either core pointer or input
extension device buttons. This makes it possible to control the keyboard or generate key-
board key events from extension devices or from the core pointer.

Key actions assigned to core X pointer buttons or input extension device buttons cause
key events to be generated as if they had originated from the core X keyboard.

Xkb implementations are required to support key actions for the buttons of the core
pointer device, but support for actions on extension devices is optional. Implementations
which do not support button actions for extension devices must not set the
XkbXI_ButtonActionsMask bit in thesupportedield of anXkbDevicelnfoRec

structure.

February 5, 1996 Library Version 1.0/Document Revision 1.0 203

The X Keyboard Extension 21 Attaching Xkb Actions to X Input Extension

If a client attempts to modify valid characteristics of a device using an implementation
which does not support modification of those characteristics, no protocol error is gener-
ated. Instead, the server reports a failure for the request; it also sefidiaiension-
DeviceNotify ~ event to the client which issued the request if the client has selected to
receive these events.

To change characteristics of an X Input Extension device in the server, first modify a local
copy of the device structure and then use ekdSetDevicelnfor, to save network traf-

fic, use arXkbDeviceChangesRec structure (see section 21.6) and édbChangeDe-
vicelnfoto download the changes to the server.

To modify some or all of the characteristics of an X Input Extension device kiztet-

Devicelnfo
Bool XkbSetDevicelnfo(dpy, which, device_infp
Display * dpy, [* connection to X server */
unsigned int which /* mask indicating characteristics to modify */

XkbDevicelnfoPtr device_infp /* structure defining the device and modifications */

XkbSetDevicelnfesends a request to the server to modify the characteristics of the device
specified in thelevice_infostructure. The particular characteristics modified are identified
by the bits set invhich, and take their values from the relevant fielddenice_info(see

Table 21.1 on page 2003kbSetDevicelnfeeturnsTrue if the request was successfully

sent to the server. If the X server implementation does not allow interaction between the X
input extension and the Xkb Extension, the function does nothing and reals®as.

Thewhichparameter specifies which aspects of the device should be changed, and is a bit-
mask composed of an inclusive OR or one or more of the following bits:
XkbXI_ButtonActionsMask , XkbXI_IndicatorNamesMask

XkbXI_IndicatorMapsMask . If the features requested to be manipulateshich are

valid for the device, but the server does not support assignment of one or more of them,
that particular portion of the request is ignored.

If the device specified idevice_infe>device_spedoes not contain buttons and a request
affecting buttons is made, or the device does not contain indicators and a request affecting
indicators is made, BadMatch protocol error results.

If the XkbXI_ButtonActionsMask bit is set in thesupportednask returned bXkbGet-
Devicelnfq the Xkb extension allows applications to assign key actions to buttons on
input extension devices other than the core keyboard device. If the
XkbXI_ButtonActionsMask is set inwhich the actions for all buttons specified in
device_infaare set to th&kbAction s specified irdevice_infe>btn_acts If the number
of buttons requested to be updated is not valid for the dexkt&etDevicelnfeeturns
False and aBadValue protocol error results.

If the XkbXI_IndicatorMaps and / orXkbXI_IndicatorNamesMask bit is set in the
supportednask returned bXkbGetDevicelnfathe Xkb extension allows applications to
assign maps and / or names to the indicators of non-keyboard extension devices. If sup-
ported, maps and / or names can be assigned to all extension device indicators, whether
they are part of a keyboard feedback or part of an indicator feedback.

If the XkbXI_IndicatorMapsMask and / orXkbXI_IndicatorNamesMask flag is set
in which, the indicator maps and / or names fodaVice infe>num_ledsndicator
devices specified idevice_infe>ledsare set to the maps and / or names specified in

February 5, 1996 Library Version 1.0/Document Revision 1.0 204

The X Keyboard Extension 21 Attaching Xkb Actions to X Input Extension

21.5

device_infe>leds device_infe>leds>led_classandled_id specify the input extension

class and device id for each indicator device to modify; if they have invalid valBad; a

Value protocol error results an¢kkbSetDevicelnfeeturnsFalse . If they have legal val-

ues but do not specify a keyboard or indicator class feedback for the device in question, a
BadMatch error results. If any of the valuesdevice_infe>leds->namesre not a valid

Atom orNone, aBadAtom protocol error results.

Xkb provides convenience functions to modify subsets of the information accessible via
XkbSetDevicelnfdOnly the parts of the structure indicated in the function description are
modified. These convenience functions are described below.

To change only the button actions for an input extension devic&ktzletDeviceBut-
tonActions

Bool XkbSetDeviceButtonActiongdpy, device, first_button, num_buttons, actipns

Display * dpy, [* connection to X server */

XkbDevicelnfoPtr device_infp /* structure defining the device and modifications */
unsigned int first_button /* number of first button to update, O relative */
unsigned int num_buttons /* number of buttons to update */

XkbSetDeviceButtonActioassigns actions to the buttons of the device specified in
device_infe>device_spedActions are assigned taim_buttonduttons beginning with
first_button and are taken from the actions specifiedarice_infe>btn_acts

If the server does not support assignment of Xkb actions to extension device Xkinns,
SetDeviceButtonActiortsas no effect and returfalse . If the device has no buttons or if
first_buttonor num_buttonspecify buttons outside of the valid range as determined by
device_infe>num_btnsthe function has no effect and retuFagse . Otherwise XkbSet-
DeviceButtonActionsends a request to the server to change the actions for the specified
buttons and returnbrue .

If the actual request sent to the server involved illegal button numtigadyalue proto-
col error is generated. If an invalid device identifier is specified in
device_infe>device_spemBadKeyboard protocol error results. If the actual device
specified indevice_infe>device_spedoes not contain buttons and a request affecting
buttons is made, BadMatch protocol error is generated.

XkbExtensionDeviceNotify Event

The Xkb extension generat&kbExtensionDeviceNotify events when the status of
an input extension device changes, or when an attempt is made to use an Xkb feature
which is not supported by a particular device.

Note Events indicating an attempt to use an unsupported feature are delivered only to the
client requesting the event.

To track changes to the status of input extension devices or attempts to use unsupported
features of a device, select to recefikbExtensionDeviceNotify events by calling
eitherXkbSelectEventsr XkbSelectEventDetai[see section 4.3).

To receivexkbExtensionDeviceNotify events under all possible conditions, call
XkbSelectEvenasnd pasXkbExtensionDeviceNotifyMask in bothbits_to_change
andvalues_for_bits

February 5, 1996 Library Version 1.0/Document Revision 1.0 205

The X Keyboard Extension

21 Attaching Xkb Actions to X Input Extension

21.6

The XkbExtensionDeviceNotify event has no event details. However, you can call
XkbSelectEventDetailssingXkbExtensionDeviceNotify as theevent_typeand spec-
ifying XkbAllExtensionDeviceMask in bits_to_changeandvalues_for_bitsThis has
the same effect as a callX@bSelectEvents

The structure foKkbExtensionDeviceNotify events is:

typedef struct {
int type; I* Xkb extension base event code */
unsigned long serial; [* X server serial number for event */
Bool send_event; [Arue => synthetically generated*/
Display * display; [* server connection where event generated */
Time time; [* server time when event generated */
int xkb_type; * XkbExtensionDeviceNotifyEvent */
int device; /* Xkb device id, will not b&XkbUseCoreKbd */
unsigned int reason; [* reason for the event */
unsigned int supported; /* mask of supported features */
unsigned int unsupported; /* unsupported features this client attempted to use */
int first_btn; [* first button that changed */
int num_btns; /* number of buttons that changed */
unsigned int leds_defined; [* indicators with names or maps */
unsigned int led_state; [* current state of the indicators */
int led_class; /* feedback class for LED changes */
int led_id; /* feedback id for LED changes */

} XkbExtensionDeviceNotifyEvent

The XkbExtensionDeviceNotify event has fields enabling it to report changes in the
state (on/off) of all of the buttons for a device, but only for one LED feedback associated
with a device. You will get multiple events when more than one led feedback changes
state or configuration.

Tracking Changes to Extension Devices

Changes to an Xkb extension device may be tracked by listenkidpbeeviceExten-

sionNotify events and accumulating the changes iXldobeviceChangesRec struc-

ture. The changes noted in the structure may then be used in subsequent operations to
update either a server configuration or a local copy of an Xkb extension device configura-
tion. The changes structure is defined below:

typedef struct _XkbDeviceChanges {

unsigned int changed; /* bits indicating what has changed */
unsigned short first_btn; /* number of first button which changed, if any */
unsigned short num_btns; /* number of buttons which have changed */

XkbDeviceLedChangesRec leds;
} XkbDeviceChangesRe¢XkbDeviceChangesPtr;

typedef struct _XkbDeviceLedChanges {

unsigned short led_class; /* class of this indicator feedback bundle */
unsigned short led_id; /* id of this indicator feedback bundle */
unsigned int names; [* bits indicating which names have changed */
unsigned int maps; /* bits indicating which maps have changed */

struct _XkbDeviceLedChanges *next; /* link to indicator change record for next set */
} XkbDeviceLedChangesReg¢XkbDeviceLedChangesPtr;

February 5, 1996

Library Version 1.0/Document Revision 1.0 206

The X Keyboard Extension 21 Attaching Xkb Actions to X Input Extension

A local description of the configuration and state of a device may be kepkxkbBevi-

celnfoRec structure. The actual state or configuration of the device may change because
of XkbSetDevicelnfandXkbSetButtonActiongquests made by clients, or by user inter-
action with the device. The X server send&hExtensionDeviceNotify event

to all interested clients when the state of any buttons or indicators or the configuration of
the buttons or indicators on the core keyboard or any input extension device changes. The
event reports the state of indicators for a single indicator feedback, and the state of up to
128 buttons. If more than 128 buttons or more than one indicator feedback are changed,
the additional buttons and indicator feedbacks are reported in subsequent events. Xkb pro-
vides functions with which you can track changes to input extension devices by noting the
changes which were made, and then requesting the changed information from the server.

To note device changes reported in&bExtensionDeviceNotify event, call
XkbNoteDeviceChanges
void XkbNoteDeviceChangegold, new, wanted
XkbDeviceChangesPtr old; [* structure tracking state changes */
XkbExtensionDeviceNotifyEvent * new /* event indicating state changes */
unsigned int wanted /* mask indicating changes to note
*/

Thewantedfield specifies the changes which should be notedidnand is composed of
the bitwise inclusive OR of one or more of the masks from Table 21.1 on pageh200
reasonfield of the event imewindicates the types of changes the event is reporting.
XkbNoteDeviceChangegpdates th&XkbDeviceChangesRec specified byold with the
changes that are both specifiedhiantedand contained inew>reason

To update a local copy of the state and configuration of an X input extension device with
the changes previously noted inXkbDeviceChangesRec structure, calKkbGetDevi-
celnfoChanges

To query the changes that have occurred in the button actions or indicator names and indi-
cator maps associated with an input extension deviceskix@etDevicelnfoChanges.

StatusXkbGetDevicelnfoChangegdpy, device info, changgs

Display * dpy; [* connection to X server */
XkbDevicelnfoPtr device_infop /* structure to update with results */
XkbDeviceChangesPtchanges /* contains notes of changes which have occurred */

Thechanges->changefield indicates which attributes of the device specified in
changes>devicehave changed. The parameters describing the changes are contained in
the other fields othangesXkbGetDevicelnfoChangeses that information to cadkb-
GetDevicelnfdo obtain the current status of those attributes which have changed. It then
updates the local description of the devicdenice_infowith the new information.

To update the server’s description of a device with the changes notekb@avice-
ChangesRec, call XkbChangeDevicelnfo

Bool XkbChangeDevicelnfo(dpy, device_info, changes
Display * dpy, [* connection to X server */
XkbDevicelnfoPtr device_infp /* local copy of device state and configuration */
XkbDeviceChangesPtchanges [* note specifying changes device_infot/

February 5, 1996 Library Version 1.0/Document Revision 1.0 207

The X Keyboard Extension 21 Attaching Xkb Actions to X Input Extension

XkbChangeDevicelnfopdates the server’'s description of the device specified in
device_infe>device_spewith the changes specified éhangesand contained in
device_info The update is made by AkbSetDevicelnfeequest.

February 5, 1996 Library Version 1.0/Document Revision 1.0 208

The X Keyboard Extension 22 Debugging Aids

22

Debugging Aids

The debugging aids are intended for use primarily by Xkb implementors, and are optional
in any implementation.

There are two bitmasks which may be used to control debugging. One bitmask controls
the output of debugging information, and the other controls behavior. Both bitmasks are
initially all zeros.

To change the values of any of the debug controlsX&halbetDebuggingFlags
Bool XkbSetDebuggingFlagédisplay, mask, flags, msg, ctrls_mask, ctrls, ret_flags, ref) ctrls

Display * display, [* connection to X server */

unsigned int mask /* mask selecting debug output flags to change */

unsigned int flags /* values for debug output flags selectednigsk*/

char * msg /* message to print right now */

unsigned int ctrls_mask /* mask selecting debug controls to change */

unsigned int ctrls; /* values for debug controls selecteddigls mask
*/

unsigned int * ret flags /* resulting state of all debug output flags */

unsigned int * ret_ctrls /* resulting state of all debug controls */

XkbSetDebuggingFlagsodifies the debug output flags as specifiedariagskandflags
modifies the debug controls flags as specifiedtog_maskandctrls, prints the message
msg and backfillget_flagsandret_ctriswith the resulting debug output and debug con-
trols flags.

When bits are set in the debug output masieskandflags Xkb prints debug informa-

tion corresponding to each bit at appropriate points during its processing. The device to
which the output is written is implementation dependent, but is normally the same device
to which X server error messages are directed; thus the bits that can beastand

flagsis implementation specific. To turn on a debug output selection, set the bit for the
output in themaskparameter and set the corresponding bit irfldgsparameter. To turn

off event selection for an event, set the bit for the output imdekparameter and do not

set the corresponding bit in tHagsparameter.

When bits are set in the debug controls maskis, maskandctrls, Xkb modifies its
behavior according to each controls bitls_maskandctrls are related in the same way
thatmaskandflagsare. The valid controls bits are defined in Table 22.1.

Table 22.1 Debug Control Masks

Debug Control Mask Value Meaning
XkbDF_DisableLocks (1<<0) Disable actions which lock modifiers

XkbSetDebuggingFlageturnsTrue if successful, anfalse otherwise. The only proto-
col error it may generate BadAlloc , if for some reason it is unable to allocate storage.

XkbSetDebuggingFlags intended for developer use and may be disabled in production
X servers. If itis disable&XkbSetDebuggingFlagsas no effect and does not generate any
protocol errors.

February 5, 1996 Library Version 1.0/Document Revision 1.0 209

The X Keyboard Extension 22 Debugging Aids

The message imsgis written immediately. The device to which it is written is implemen-
tation dependent, but is normally the same device where X server error messages are
directed.

February 5, 1996 Library Version 1.0/Document Revision 1.0 210

The X Keyboard Extension Glossary

Glossary

Allocator
Xkb provides functions, known as allocators, to create and initialize Xkb data structures.

Audible Bell

An audible bell is the sound generated by whatever bell is associated with the keyboard or
input extension device, as opposed to any other audible sound generated elsewhere in the
system.

Autoreset Controls

The autoreset controls configure the boolean controls to automatically be enabled or
disabled at the time a program exits.

Base Group
The group in effect as a result of all actions other than a previous lock or latch request; the
base group is transient. For example, the user pressing and holding a group shift key
which shifts to Group2 would result in the base group being group 2 at that point in time.
Initially, base group is always Groupl.

Base Modifiers

Modifiers which are turned on as a result of some actions other than previous lock or latch
requests; base modifiers are transient. For example, the user pressing and holding a key
bound to the Shift modifier would result in Shift being a base modifier at that point in
time.

Base Event Code

A number assigned by the X server at run time which is assigned to the extension to
identify events from that extension.

Base State

The base group and base modifiers represent keys that are physically or logically down;
these constitute the base state.

Boolean Controls

Global keyboard controls which may be selectively enabled and disabled under program
control, and which may be automatically set to an on or off condition upon client program
exit.

Canonical Key Types

The canonical key types are predefined key types which describe the types of keys avail-
able on most keyboards. The definitions for the canonical key types are held in the first
XkbNumRequiredTypes entries of theéypesfield of the client map, and are indexed

using the following constants:

XkbOnelLevellndex
XkbTwoLevellndex
XkbAlphabeticlndex
XkbKeypadindex

Client Map
The key mapping information needed to convert arbitrary keycodes to symbols.

February 5, 1996 Library Version 1.0/Document Revision 1.0 211

The X Keyboard Extension Glossary

Compat Name

Thecompatname is a string which provides some information about the rules used to bind
actions to keys that are changed using core protocol requests.

Compatibility State
When an Xkb-extended X server connects to an Xkb-unaware client, the compatibility
state remaps the keyboard group into a core modifier whenever possible.

Compatibility Grab State
The grab state that results from applying the compatibility map to the Xkb grab state.

Compatibility Map
The definition of how to map core protocol keyboard state to Xkb keyboard state.

Component Expression

An expression used to describe server keyboard database components to be loaded. It
describes the order in which the components should be loaded, and the rules by which
duplicate attributes should be resolved.

Compose Processing
The process of mapping a series of keysyms to a string is known as compose processing.

Consumed Modifier

Xkb normally consumes modifiers in determining the appropriate symbol for an event,
that is, the modifiers are not considered during any of the later stages of event processing.
For those rare occasions when a mod#heuld be considered despite having been used

to look up a symbol, key types include an optiqgrakervefield.

Core Event
An event created from the core X server.

Detectable Auto-repeat

Detectable auto-repeat allows a client to detect an auto-repeating key. If a client requests
and the server supports detectable auto-repeat, Xkb gerteegRsease events only

when the key is physically released. Thus the client receives a nunimRoéss

events for that key without intervenik@yRelease events, until the key is finally

released, whenlkéeyRelease event is received.

Effective Group

The effective group is the arithmetic sum of the locked, latched, and base groups. The
effective keyboard group is always brought back into range depending on the value of the
GroupsWrap control for the keyboard. If an event occurs with an effective group that is
legal for the keyboard as a whole, but not for the key in question, the forahat event

only is normalized using the algorithm specified bydheup_infomember of the key

symbol map XkbSymMapReq.

Effective Mask

An Xkb modifier definition consists of a set of bit masks corresponding to the eight real
modifiers; a similar set of bitmasks corresponding to the 16 named virtual modifiers; and
an effective mask. The effective mask represents the set of all real modifiers which can
logically be set either by setting any of the real modifiers or by setting any of the virtual
modifiers in the definition.

February 5, 1996 Library Version 1.0/Document Revision 1.0 212

The X Keyboard Extension Glossary

Effective Modifier
The effective modifiers are the bitwise union of the base, latched and locked modifiers.

Extension Device
Any keyboard or other input device recognized by the X input extension.

Global Keyboard Controls

Controls that affect the way Xkb generates key events. The controls affect all keys, as
opposed to per-key controls that are for a single key. Global controls include

RepeatKeys Control
DetectableAuto-repeat
SlowKeys
BounceKeys
StickyKeys
MouseKeys
MouseKeysAccel
AccessXKeys
AccessXTimeout
AccessXFeedback
Overlayl

Overlay?2
EnabledControls

Grab State

The grab state is the state used when matching events to passive grabs. It consists of the
grab group and the grab modifiers.

Group
See Keysym Group

Group Index

A number used as the internal representation for a group number. Groupl through Group
4 have indices of 0 through 3.

Groups Wrap Control

If a group index exceeds the maximum number of groups permitted for the specified
keyboard, it is wrapped or truncated back into range as specified by the global
GroupsWrap control. GroupsWrap can have the following values:

WraplntoRange
ClamplintoRange
RedirectintoRange

Key Type
An attribute of a key which identifies which modifiers affect the shift level of a key, and
the number of groups on the key.

Key Width
The maximum number of shift levels in any group for the key type associated with a key.

February 5, 1996 Library Version 1.0/Document Revision 1.0 213

The X Keyboard Extension Glossary

Keysym Group

A keysym group is a logical state of the keyboard providing access to a collection of
characters. A group usually contains a set of characters which logically belong together
and which may be arranged on several shift levels within that group. For example, Groupl
could be the English alphabet, and Group2 could be Greek. Xkb supports up to four
different groups for an input device or keyboard. Groups are in the range 1-4 (Groupl -
Group4), and are often referred to as G1 - G4 and indexed as O - 3.

Indicator

An indicator is a feedback mechanism such as an LED on an input device. Using Xkb, a
client application can determine the names of the various indicators, determine and control
the way that the individual indicators should be updated to reflect keyboard changes, and
determine which of the 32 keyboard indicators reported by the protocol are actually
present on the keyboard.

Indicator Feedback

An indicator feedback describes the state of a bank of up to 32 lights. It has a mask where
each bit corresponds to a light, and an associated value mask that specifies which lights
are on or off.

Indicator Map

An indicator has its own set of attributes that specify if clients can explicitly set its state
and if it tracks the keyboard state. The indicator map is the collection of these attributes
for each indicator and is held in thepsarray, which is an array ofbindicatorRec
structures.

Input Extension

An extension to the core X protocol which allows an X server to support multiple
keyboards, as well as other input devices, in addition to the core X keyboard and pointer.
Other types of devices supported by the input extension include, but are not limited to:
mice, tablets, touchscreens, barcode readers, button boxes, trackballs, identifier devices,
data gloves, and eye trackers.

Key Action

A key action consists of an operator and some optional data. Once the server has applied
the global controls and per-key behavior and has decided to process a key event, it applies
key actions to determine the effects of the key on the internal state of the server. Xkb
supports actions which:

» change base, latched or locked modifiers or group

move the core pointer or simulate core pointer button events
change most aspects of keyboard behavior

terminate or suspend the server

send a message to interested clients

simulate events on other keys

Key Alias

A key alias is a symbolic name for a specific physical key. Key aliases allow the keyboard
layout designer to assign multiple key names to a single key. This allows the keyboard
layout designer to refer to keys using either their position or their “function.” Key aliases
can be specified both in the symbolic names component and in the keyboard geometry.

February 5, 1996 Library Version 1.0/Document Revision 1.0 214

The X Keyboard Extension Glossary

Both sets of aliases are always valid, but key alias definitions in the keyboard geometry
have priority; if both symbolic names and geometry include aliases, you should consider
the definitions from the geometry before considering the definitions from the symbolic
names section.

Key Behavior
Thebehaviorsfield of the server map is an arrayX¥dbBehavior , indexed by keycode,
and contains the behavior for each key. The X server uses key behavior to determine
whether to process or filter out any given key event; key behavior is independent of
keyboard modifier or group state. Each key has exactly one behavior.

Key behaviors include:

XkbKB_Default
XkbKB_Lock
XkbKB_RadioGroup
XkbKB_Overlayl
XkbKB_Overlay?2

Key Symbol Map

A key symbol map describes the symbols bound to a key and the rules to be used to
interpret those symbols. It is an arraybSymMapRecstructures indexed by keycode.

Key Type
Key types are used to determine the shift level of a key given the current state of the
keyboard. There is one key type for each group for a key. Key types are defined using the
XkbKeyTypeRec andXkbKTMapEntryRec structures. Xkb allows up to
XkbMaxKeyTypes (255) key types to be defined, but requires at least
XkbNumRequiredTypes (4) predefined types to be in a key map.

Keyboard Bells

The sound the default bell makes when rung is the system bell or the default keyboard
bell. Some input devices may have more than one bell, identifiedlbylassand
bell_id.

Keyboard Components

There are five types of components stored in the X server database of keyboard
components. They correspond to fiyenbols, geometry, keycodes, congpattypes
symbolic names associated with a keyboard.

Keyboard Feedback
A keyboard feedback includes the following:

keyclick volume
bell volume
bell pitch
bell duration
global auto-repeat
per key auto-repeat
32 leds

Key Width, Key Type Width
The maximum number of shift levels for a type is referred to as the width of a key type.

February 5, 1996 Library Version 1.0/Document Revision 1.0 215

The X Keyboard Extension Glossary

Keyboard Geometry
Keyboard geometry describes the physical appearance of the keyboard, including the
shape, location and color of all keyboard keys or other visible keyboard components such
as indicators, and is stored ixXkbGeometryRec structure. The information contained in
a keyboard geometry is sufficient to allow a client program to draw an accurate
two-dimensional image of the keyboard.

Keyboard Geometry Name

The keyboard geometry name describes the physical location, size and shape of the
various keys on the keyboard and is part ofXkleNamesRec structure.

Keyboard State

Keyboard state encompasses all of the transitory information necessary to map a physical
key press or release to an appropriate event.

Keycode
A numeric value returned to the X server when a key on a keyboard is pressed or released,
indicating which key is being modulated. Keycode numbers are in the range 1 <= keycode
<= max, where max is the number of physical keys on the device.

Keycode Name

The keycode name describes the range and meaning of the keycodes returned by the
keyboard, and is part of thékbNamesRec structure.

Latched Group
A latched group is a group index that is combined with the base and locked group to form
the effective group. It applies only to the next key event that does not change the keyboard
state. The latched group can be changed by keyboard activity or via Xkb extension library
functions.

Latched Modifier
Latched modifiers are the set of modifiers which are combined with the base modifiers
and the locked modifiers to form the effective modifiers. It applies only to the next key
event that does not change the keyboard state.

LED

A light emitting diode. However, for the purposes of the X keyboard extension
specification, a LED is any form of visual two state indicator which is either on or off.

Locked Group
A locked group is a group index that is combined with the base and latched group to form
the effective group. When a group is locked, it supersedes any previous locked group and
remains the locked group for all future key events, until a new group is locked. The locked
group can be changed by keyboard activity or via Xkb extension library functions.

Locked Modifiers
Locked modifiers are the set of modifiers which are combined with the base modifiers and
the latched modifiers to form the effective modifiers. A locked modifier applies to all
future key events until it is explicitly unlocked.

February 5, 1996 Library Version 1.0/Document Revision 1.0 216

The X Keyboard Extension Glossary

Lookup State

The lookup state is composed of the lookup group and the lookup modifiers, and it is the
state an Xkb-capable or Xkb-aware client should use to map a keycode to a keysym.

Modifier

A modifier is a logical condition which is either set or unset. The modifiers control the
Shift Level selected when a key event occurs. Xkb supports the core protocol eight
modifiers Shift , Lock , Control , andMod1 throughMod5), called thaeal modifiers.

In addition, Xkb extends modifier flexibility by providing a set of sixteen named virtual
modifiers, each of which can be bound to any set of the eight real modifiers.

Modifier Key

A modifier key is a key whose operation has no immediate effect, but which, for as long as
it is held down, modifies the effect of other keys. A modifier key may be, for example, a
shift key or a control key.

Modifier Definition

An Xkb modifier definition, held in aiXkbModsRec, consists of a set of real modifiers, a

set of virtual modifiers, and an effective mask. The mask is the union of the real modifiers
and the set of real modifiers to which the virtual modifiers map; the mask cannot be
explicitly changed.

Non-keyboard Extension Device

An input extension device which is not a keyboard. Other types of devices supported by
the input extension include, but are not limited to: mice, tablets, touchscreens, barcode
readers, button boxes, trackballs, identifier devices, data gloves, and eye trackers.

Outlines

An outline is a list of one or more points which describes a single closed-polygon, used in
the geometry specification for a keyboard.

Physical Indicator Mask

The physical indicator mask is a field in tkigblndicatorRec which indicates which
indicators are bound to physical LEDs on the keyboard; if a bit is péys indicators

then the associated indicator has a physical LED associated with it. This field is necessary
because some indicators may not have corresponding physical LEDs on the keyboard.

Physical Symbol Keyboard Name

Thesymbolskeyboard name identifies the symbols logically bound to the keys. The
symbols name is a human or application-readable description of the intended locale or
usage of the keyboard with these symbols.gthes_symbolkeyboard name, on the other
hand, identifies the symbols actually engraved on the keyboard.

Preserved Modifier

Xkb normally consumes modifiers in determining the appropriate symbol for an event,
that is, the modifiers are not considered during any of the later stages of event processing.
For those rare occasions when a modsleuld be considered despite having been used

to look up a symbol, key types include an optigakervefield. If a modifier is present

in thepreservdist, it is a preserved modifier.

February 5, 1996 Library Version 1.0/Document Revision 1.0 217

The X Keyboard Extension Glossary

Radio Group

A radio group is a set of keys whose behavior simulates a set of radio buttons. Once a key
in a radio group is pressed, it stays logically depressed until another key in the group is
pressed, at which point the previously depressed key is logically released. Consequently,
at most one key in a radio group can be logically depressed at one time.

Real Modifier
Xkb supports the eight core protocol modifiesbift , Lock , Control , andMod1
throughMod9); these are called thieal modifiers, as opposed to the set of sixteen named
virtual modifiers which can be bound to any set of the eight real modifiers.

Server Internal Modifiers

Modifiers which the server uses to determine the appropriate symbol for an event; internal
modifiers are normally consumed by the server.

Shift Level

One of several states (normally 2 or 3) governing which graphic character is produced when a key
is actuated.

Symbol Keyboard Name
Thesymbolskeyboard name identifies the symbols logically bound to the keys. The
symbols name is a human or application-readable description of the intended locale or
usage of the keyboard with these symbols. gthes_symbolkeyboard name, on the other
hand, identifies the symbols actually engraved on the keyboard.

Symbolic Name
Xkb supports symbolic names for most components of the keyboard extension. Most of
these symbolic names are grouped intonimescomponent of the keyboard description.

State Field

The portion of a client-side core protocol event which holds the modifier, group, and
button state information pertaining to the event.

Types Name

Thetypesname provides some information about the set of key types that can be
associated with the keyboard. In addition, each key type can have a name, and each shift
level of a type can have a name.

Valuator
A valuator reports a range of values for some entity, like a mouse axis, a slider or a dial.

Virtual Modifier

Xkb provides a set of sixteen named virtual modifiers which can be bound to any set of the
eight real modifiers. Each virtual modifier can be bound to any set of the real modifiers
(Shift , Lock, Control andMod1-Mod5).

Virtual Modifier Mapping
Xkb maintains a virtual modifier mapping, which lists the virtual modifiers associated
with each key.

February 5, 1996 Library Version 1.0/Document Revision 1.0 218

The X Keyboard Extension Glossary

Xkbh-aware Client

A client application which initializes Xkb extension, and is consequently bound to an Xlib
which includes the Xkb extension.

Xkb-capable Client

A client application which makes no Xkb extension Xlib calls, but which is bound to an
Xlib which includes the Xkb extension.

Xkb-unaware Client

A client application which makes no Xkb extension Xlib calls, and which is bound to an
Xlib which does not include the Xkb extension.

February 5, 1996 Library Version 1.0/Document Revision 1.0 219

The X Keyboard Extension

Index

A
AccessX enable/disable bits, table 75
AccessXFeedback 583, 72
AccessXKeys 5372
AccessXNotify 64 65
AccessXTimeout 5362, 72
Action modifiers 143
Actions 140
changing number of actions bound to key 159
controls action types, table 153
detecting key action messages 154
device button action types 157
for changing active screen 152

BadDevice 9

Badld 9

Badlmplementation 9
BadKeyboard 49

BadMatch 9

BadValue 9

Base error code 7

Base event code, 14

Base Event Code, glossary entry 211
Base group 20211

Base Group, glossary entry 211
Base modifiers 20211

Base Modifiers, glossary entry 211

for changing button number simulated by mouse keys 148 Base State, glossary entry 211

for changing current group state 144

for changing state of boolean controls 153
for changing the state of modifiers 142

for generating a different keycode for key 155

BeepOnComposeFail 83
Behavior
key behaviors, table 160
keys 160

for generating DeviceButtonPress and DeviceButtonRelease obtaining key behaviors from the server 161

157
for generating messages 154
for locking modifiers and group 149
for moving the pointer 146
for simulating events from device valuators 158
for simulating pointer button press and release 147
group action flags, table 145
group action types, table 145
ISO action flags, table 150
message action flags, table 154
modifier action flags, table 144
modifier action types, table 143
obtaining actions for keys from server 159
pointer action types, table 146
ponter button action flags, table 148
ponter button action types, table 148
switch screen action flags, table 152
Allocator, glossary entry 211
AlwaysConsumeShiftAndLock 82
Audible Bell, glossary entry 211
AudibleBell 48 53, 56, 72
AutoReset 5354, 72
Autoreset Controls, glossary entry 211
AX_BounceKeyReject 48
AX_FeatureChange 48
AX_FeatureOff 48
AX_FeatureOn 48
AX_IndicatorChange 48
AX_IndicatorOff 48
AX_IndicatorOn 48
ax_options 75
ax_options values 63
AX_SlowKeyAccept 48
AX_SlowKeyPress 48
AX_SlowKeyReject 48
AX_SlowKeyRelease 48
AX_SlowKeysWarning 48
AX_StickyLatch 48
AX_StickyLock 48
AX_StickyUnlock 48

B
BadAccess 9
BadAlloc 9
BadAtom 9
BadClass 9

BellFeedbackClass 48
Bells 47
audible 48
BeepOnComposeFail 83
bell_class and bell_id 48
detecting 51
fixed pitch bell only 64
forcing a server-generated bell 51
generating bell events 49
generating named bell events 50
high and low pitched beeps, rising and falling tones 63
names 47
predefined 48
sounding 49
Boolean controls 53
actions for changing the state of 153
Boolean Controls, glossary entry 211
BounceKeys 5366, 72
debounce_delay 75
delay 66
Bounds
computing bounding box of a row 105
computing bounding box of a section 105
computing bounding box of a shape 104
keyboard geometry 92
sections 94
shapes 93
Buttons, pointer 20

C
Canonical key types 128
initializing 130
used in compatiblity map 175
Canonical Key Types, glossary entry 211
Changes data structures 12
ClamplintoRange 6974, 134
Client map 2 115, 125
allocating and freeing 122
key symbol map 132
Client Map, glossary entry 211
Client types
Xkb-aware 3 21, 166
Xkb-capable 321, 166
Xkb-unaware 321, 166
Colors
keyboard, key label 92

February 5, 1996

Library Version 1.0/Document Revision 1.0

Index-1

The X Keyboard Extension

Index

listed in geometry description 92
Compat Name, glossary entry 212
Compatibility 3

allocating and freeing maps 178

changing the server’'s map 176

core keyboard mapping to Xkb keyboard mapping transfor-

mation 169

data structure 168

data structures, diagram 168

determining library 6

diagram 167

getting map components from server 173

group maps 168

map 166

setting explicit component controls 16870, 175

states 22

symbol interpretation match criteria, table 171

symbol interpretations 171

tracking changes to the map 177

types of transformations 167

using the compatibility map 174

with the core protocol 4

Xkb keyboard mapping to core keyboard mapping transfor-

mations 172

Xkb state to core protocol state transformation 168
Compatibility Grab State, glossary entry 212
Compatibility Map, glossary entry 212
Compatibility State, glossary entry 212
Component Expression, glossary entry 212
Components, explicit 162
Compose processing controls 82
Compose Processing, glossary entry 212
ComposeLED 83
Composing

BeepOnComposeFail 83

ComposeLED 83

ConsumeKeysOnComposeFail 82
Consumed Modifier, glossary entry 212
ConsumeKeysOnComposeFail 82
ConsumelLookupMods 81
Controls 2

AccessXFeedback 63

AccessXTimeout 62

actions for changing the state of 153

affecting compose processing 82

affecting keycode to string translation 81

allocating and freeing data structure 80

AlwaysConsumesShiftAndLock 82

AudibleBell 56

AutoReset 54

BeepOnComposeFail 83

bell behavior 56

boolean 53 81

BounceKeys 66

changing 77

changing the state of library controls 84

cleaning up on exit 54

ComposeLED 83

ConsumeKeysOnComposeFail 82

ConsumelLookupMods 81

controls action types, table 153

data structure 71

DetectableAutorepeat 57

determining the state of libarary controls 84

determining which library controls are implemented 84

effecting event delivery 83
EnabledControls 54
enabling and diabling other controls 54
for general keyboard mapping 68
ForcelLatinlLookup 81
GroupsWrap 69
IgnoreGroupLock 70
IgnoreLockMods 69
IgnoreNewKeyboards 83
InternalMods 70
keyboard 53
keyboard use for physically-impaired persons 61
library controls masks 84
MouseKeys 59
MouseKeysAccel 59
overlays 58
PerKeyRepeat 56
querying 76
repeat key behavior 56
RepeatKeys 56
SlowKeys 65
StickyKeys 67
table listing all 72
tracking changes to keyboard controls 78
using the mouse from the keyboard 59
X library 81
Core Event, glossary entry 212

D
Data structures 11
editing 11
enlarging 11
freeing 13
debounce_delay 75
Debugging 209
Detectable Auto-repeat, glossary entry 212
DetectableAutorepeat 5%7, 72
Device feedback, types 197
Device identifier 10
Device specifications, matching with display specifications 9
Devices
actions for generating DeviceButtonPress and DeviceBut-
tonRelease 157
actions simulating events from device valuators 158
allocating, initializing and freeing data structures 202
attaching Xkb actions to 197
querying features for non-KeyClass devices 199
querying for button actions 200
querying indicator information 201
setting features for non-KeyClass devices 203
tracking changes to 206
Display, actions for changing active screen 152
Doodads 9295
in sections 94
indicator 95
logo 95
outline 95
priority 95
solid 95
text 95
types 95
Drawing a keyboard representation 96
DumbBells 64

February 5, 1996

Library Version 1.0/Document Revision 1.0

Index-2

The X Keyboard Extension

Index

E
Effective group 20
Effective Group, glossary entry 212
Effective mask 31
Effective Mask, glossary entry 212
Effective modifier mask 31
Effective Modifier, glossary entry 213
Effective modifiers 20
enabled_ctrls 74
EnabledControls 5354, 72
Errors, protocol 9
Events

AccessXNotify 64

base event code 14

data structures 15

interpreting key events 86

MouseKeys 65

overview 14

RepeatKeys 65

selecting for 15

StickyKeys 65

types 14

types, table 14
Explicit component masks, table 162
Explicit components 162
ExplicitAutoRepeat 162
ExplicitBehavior 162
Explicitinterpret 162
ExplicitkeyTypel 162
ExplicitkeyType2 162
ExplicitkeyType3 162
ExplicitkeyType4 162
ExplicitVModMap 162
Extension Device, glossary entry 213

F

Feedback, types 197
Fonts, key label 92
ForceLatin1Lookup 81

G
Geometry 391
adding elements to 105
allocating and freeing components 109
bounds, keyboard 92
bounds, sections 94
bounds, shapes 93
computing the bounding box of a row 105
computing the bounding box of a section 105
computing the bounding box of a shape 104
data structures 97
data structures, diagram 97
doodad types 95
doodads 9295
doodads in sections 94
drawing a keyboard representation 96
finding the overlay for a key 105
functions for using 104
getting from server 103
key aliases 92
key drawing order 94
key label color 92
key label font 92
keyboard color 92
keyboard with four sections, diagram 93

keys 94

list of colors 92

outlines 93

outlines, diagram 104

overlay keys 95

overlay rows 95

overlays 94

priority 91, 94

priority, doodads 95

properties 92105

rotated keyboard sections 91

rotated keyboard sections, diagram 91

rows 94

rows in a section, diagram 94

sections 9294

shapes 9293

top-level geometry description 91
Global Keyboard Controls, glossary entry 213
Grab group 21
Grab modifiers 21
Grab state 21
Grab State, glossary entry 213
Grabs

passive, ignoring group locks 70
Group Index, glossary entry 213
Group, glossary entry 213
Groups 20Q 115, 116

bindings for alternate group hints 192

changing 23

changing current state via key actions 144

compatibility maps 168

group action flags, table 145

group action types, table 145

group index constants 137

handling illegal groups 69

locking via actions 149

normalizing groups into range 2@33

per-key group information 133

symbolic group names 23

treatment of out-of-range groups 133
Groups Wrap Control, glossary entry 213
GroupsWrap 5368, 69, 72, 74

H
Header files 6

I
IgnoreGroupLock 5468, 70, 72
IgnoreLockMods 5468, 69, 72, 74
IgnoreNewKeyboards 83
Implicit support 86
Indicator feedback 197
Indicator Feedback, glossary entry 214
Indicator map 35
Indicator Map, glossary entry 214
Indicator, glossary entry 214
Indicators 3 34
allocating and freeing maps 45
changing maps 42
changing maps and state 41
ComposeLED 83
data structures 34
effects of explicit changes on 41
geometry, colors when lit and dark 95
getting information about from server 39

February 5, 1996

Library Version 1.0/Document Revision 1.0 Index-3

The X Keyboard Extension

Index

getting information by index 40
getting information by name 40
getting the state of 40
how controls affect 39
how groups affect 36
how modifiers affect 37
indicator drives keyboard 35
keyboard drives indicator 35
maps 35
names 34
querying names, maps and state 201
tracking changes to state or map 44
Initializing Xkb 7
Input extension
attaching Xkb actions to devices 197
Input Extension, glossary entry 214
InternalMods 54 68, 70, 72
1ISO9995 standard 115

K
KbdFeedbackClass 48
Key Action, glossary entry 214
Key actions 140
independence of modifier state 116
Key Alias, glossary entry 214
Key aliases
geometry 92
names array 180
Key Behavior, glossary entry 215
Key events
interpreting 86
Xkb filtering out-of-range keycodes 187
Key symbol map 132
Key Symbol Map, glossary entry 215
Key Type, glossary entry 21215
Key types
ALPHABETIC 129
and shift levels 116
canonical 128
canonical key types, initializing 130
canonical, used in compatibility map 175
changing the number of levels in 131
copying key type data structures 131
getting from the server 130
KEYPAD 129
names 127
offset in symbol map 134
ONE_LEVEL 128
per-key key types indices 133
TWO_LEVEL 128
width (number of shift levels) 134
Key types, example 127
Key Width, glossary entry 213

Key Width, Key Type Width, glossary entry 215

Keyboard
components, server database 189
feedback 197
geometry 91
geometry sections 92
IgnoreNewKeyboards 83
names 179
replacing on the fly 186
symbolic name 92

unresponsiveness because of SlowKeys 62

Keyboard Bells, glossary entry 215

Keyboard Components, glossary entry 215
Keyboard controls 53
for physically-impaired persons 61
tracking changes 78
Keyboard description ,27
allocating and freeing 28
building from server database 192
changing 12
getting from server 28
updating library description 89
Keyboard Feedback, glossary entry 215

Keyboard Geometry Name, glossary entry 216

Keyboard Geometry, glossary entry 216
Keyboard mapping 115

client map 115

server map 115

shift levels and groups, diagram 116
Keyboard state 19

base group 20211

base modifiers 20211

compatibility states 22

description 19

determining 23

effective group 20

effective modifiers 20

grab state 21

keysym groups 20

lookup state 21

modifiers 20

tracking 24
Keyboard State, glossary entry 216
KeyClass 10 156, 197
Keycode Name, glossary entry 216
Keycode to string translation 81
Keycode, glossary entry 216
Keycodes

actions for generating a different keycode for key 155

finding keysym bound to 88

keys which report more than one keycode 58
translating keycode to symbol and modifiers 90

Xkb filtering out-of-range key events 187
Keymap

allocating and freeing 12223

changing map components 119

client map 125

functions 88

getting map components from the server 117

getting partial map components from the server, table 118

tracking changes to 121
Keys

actions 140

aliases 92180

behavior 117 160

behaviors, table 160

bindings hints 192

changing number of actions bound to key 159
changing number of groups and types for 136
changing the number of symbols bound to 137

finding keysym bound to 88

finding symbol for key with a particular state 88
for generating a different keycode for key 155

geometry 94
geometry, drawing order 94

getting per-key modifier map from server 138
getting the symbol map from the server 136

February 5, 1996

Library Version 1.0/Document Revision 1.0

Index-4

The X Keyboard Extension

Index

label font and color 92
obtaining key actions for keys from server 159
obtaining key behaviors from the server 161
offset in symbol map 134
overlay geometry 95
per-key group information 133
per-key modifier map 138
symbolic names 180
types 126
width (number of shift levels) 134
Keysym group 20115
Keysym Group, glossary entry 214
Keysyms
finding modifier set bound to keysym 88
finding symbol for key with a particular state 88
to string translation control 82
translating keycode to symbol and modifiers 90

L
Latched Group, glossary entry 216
Latched Modifier, glossary entry 216
LatchToLock 68
Latinl character set lookup 81
LED, glossary entry 216
Levels 115 116
and key types 116
changing the number in a key type 131
key types 126
names 127
Linking with the Xkb extension 6
Locked Group, glossary entry 216
Locked Modifiers, glossary entry 216
Lookup group 21
Lookup modifiers 21
Lookup state 21
Lookup State, glossary entry 217

M
Major opcode 7
map 3
MappingNotify 83 86, 87, 174, 177, 187
Messages
actions for generating 154
detecting key action messages 154
Modifier Definition, glossary entry 217
Modifier Key, glossary entry 217
Modifier, glossary entry 217
Modifiers 20
action flags 144
action types, table 143
actions for changing the state of 142
bindings for modifier keys hints 192
changing the state via key actions 143
consume lookup modifiers control 81
effective mask 31
finding modifier set bound to keysym 88
forcing shift and lock to be consumed 82
getting per-key map from server 138
in actions to generate different keycode for key 156
inactive virtual modifiers 32
key action independent of 116
key types containing 126
locking via actions 149
masks 22
modifier definition 30

names and masks 30
per-key modifier map 138
preserve field 127
preventing from being consumed 127
real 30
specifying which should be consumed by server 70
translating keycode to symbol and modifiers 90
virtual 30
virtual modifier server mapping 163
MotionNotify 146
Mouse
using from the keyboard 59
MouseKeys 5359, 72
acceleration, diagram 61
changing button number simulated by mouse keys 148
MouseKeysAccel 5359, 72
absolute pointer motion 60
fields, table 59
relative pointer motion 60

N
Names 3
allocating and freeing symbolic names 185
changing symbolic names on server 182
getting keyboard description by component expression
names 193
getting symbolic names from server 182
shift level 127
symbolic 179
symbolic keyboard 92
symbolic names masks, table 181
tracking changes 184
types 127
NewKeyboardNotify 83
Non-keyboard Extension Device, glossary entry 217
Normalizing groups 20

(0]
Outlines 93
approximation 93
primary 93
Outlines, glossary entry 217
Overlays
controls 58
geometry keys 95
geometry rows 95
geometry, finding the overlay for a key 105
in geometry sections 94
Overlayl and Overlay?2 controls 532

P
PerKeyRepeat 53566, 73, 76
Physical Indicator Mask, glossary entry 217
Physical Symbol Keyboard Name, glossary entry 217
Pointer
buttons 20
changing button number simulated by mouse keys 148
motion, absolute 60
motion, relative 60
moving via actions 146
pointer action types, table 146
pointer button action flags, table 148
pointer button action types, table 148
simulating pointer buttons via key actions 147
Preserved Modifier, glossary entry 217

February 5, 1996

Library Version 1.0/Document Revision 1.0

Index-5

The X Keyboard Extension Index

Preserving modifiers from being consumed 127 automatically turning off 67
Priority locking a modifier 68
doodads 95 Symbol Keyboard Name, glossary entry 218
geometry 91 Symbolic Name, glossary entry 218
sections 94 Symbolic names 179
Properties
geometry 105 T
Protocol errors 9 Translating
added by Xkb 4 series of keysyms to string 81
single keycode to string 81
R TwoKeys 67
Radio Group, glossary entry 218
Radio groups 3160 \
names 181 Valuator 158
Real Modifier, glossary entry 218 Valuator action 158
Real modifiers 30 Valuator, glossary entry 218
RedirectintoRange §974, 134 Version, determining 6
Remapping Virtual Modifier Mapping, glossary entry 218
avoiding automatic by server 162 Virtual Modifier, glossary entry 218
repeat_delay 74 Virtual modifiers 30
repeat_interval 74 conventions for names 32
Repeating keys data structure relationships, diagram 164
controls 56 effective mask 31
detecting 57 example 32
RepeatKeys 5356, 73 inactive 32
Rows 94 key mapping 31
geometry 94 master modifier definitions 31
overlay 95 modifier definition 30
names and masks 30
S obtaining bindings from server 164
Sections 9294 server mapping 163
doodads in 94 Visual bells, generating 452
overlays 94
priority 94 W
Server Want and need components, table ;1946
avoiding automatic remapping by 162 WrapintoRange 6974, 134
Server database 189
changing map components 119 X
class(member) form 190 X library controls 81
complete and partial entries 189 X library functions affected by Xkb 87
component hints 191 X server version required 1
component names 190 XChangeDeviceNotify 186
getting key types 130 XEvent 18
getting map components from 117 Xkb
getting partial map components from, table 118 attaching actions to input extension devices 197
listing keyboard components 190 changes data structures 12
obtaining virtual modifier bindings from 164 compatibility map 166
virtual modifier definitions 163 extension components 1
Server interaction with clients, diagram 166 extension library functions 4
Server Internal Modifiers, glossary entry 218 groups and shift levels 116
Server map 2 implicit support 86
allocating and freeing 123 keyboard extension support for keyboards 1
keyboard mapping 115139 keyboard mapping 115
Shapes 9293 overall structure, diagram 2
Shift Level, glossary entry 218 overview 1
Shift levels 115 116 state, diagram 19
and key types 116 X library functions affected 87
changing the number of in a key type 131 Xkb client map, diagram 125
key types 126 Xkb events
names 127 base event code 14
SlowKeys 53 65, 73 data structures 15
acceptance delay 655 overview 14
Standard, 1ISO9995 115 selecting for 15
State Field, glossary entry 218 types 14
StickyKeys 53 67, 73 types, table 14

February 5, 1996 Library Version 1.0/Document Revision 1.0 Index-6

The X Keyboard Extension

Index

Xkb extension

disabling 8

name 6
Xkb server map, diagram 139
XKB.h 6
Xkb_RGAllowNone 161
XkbAccessXNotify 15 64
XkbAccessXNotifyEvent 1864
XkbAction data structure 142
XkbActionCtrls macro 154
XkbActionMessage 15154
XkbActionMessageEvent 1855
XkbAddDeviceLedInfo() 202
XkbAddGeomColor() 106
XkbAddGeomDoodad() 108
XkbAddGeomKey() 107
XkbAddGeomKeyAlias() 106
XkbAddGeomOutline() 106
XkbAddGeomOverlay() 108
XkbAddGeomOverlayKey() 108
XkbAddGeomOverlayRow() 108
XkbAddGeomProperty() 106
XkbAddGeomRow() 107
XkbAddGeomSection() 107
XkbAddGeomShape() 107
XkbAddSyminterpret() 176
XkbAllocClientMap() 122
XkbAllocCompatMap() 178
XkbAllocControls() 80
XkbAllocDevicelnfo() 202
XkbAllocDeviceLedInfo() 202
XkbAllocGeomColors() 110
XkbAllocGeomDoodads() 113
XkbAllocGeometry() 114
XkbAllocGeomKeyAliases() 110
XkbAllocGeomKeys() 109
XkbAllocGeomOutlines() 109
XkbAllocGeomOverlayKeys() 113
XkbAllocGeomOverlayRows() 113
XkbAllocGeomOverlays() 112
XkbAllocGeomPoints() 111
XkbAllocGeomProps() 109
XkbAllocGeomRows() 112
XkbAllocGeomSectionDoodads() 113
XkbAllocGeomSections() 111
XkbAllocGeomShapes() 111
XkbAllocIndicatorMaps() 45
XkbAllocKeyboard() 28
XkbAllocNames() 185
XkbAllocServerMap() 123
XkbAlphabeticlndex canonical key type 128
XkbAnyAction data structure 142
XkbAnyEvent 15 18
XkbApplyCompatMapToKey() 175
Xkb-aware client 321
Xkb-aware Client, glossary entry 219
XkbAX_AnyFeedback macro 76
XkbAX_DumbBellFBMask 64
XkbAX_NeedFeedback macro 76
XkbAX_NeedOption macro 75
XKbAXN_AXKWarning 64
XkbAXN_BKAccept 64
XkbAXN_BKReject 64
XKkbAXN_SKAccept 64
XKkbAXN_SKPress 64

XkbAXN_SKReject 64
XkbAXN_SKRelease 64
XkbBehavior data structure 160
XkbBell(') 49
XkbBellEvent() 50
XkbBellNotify 14, 47, 64
XkbBellNotifyEvent 18 52
XkbBoundsRec 100
Xkb-capable client 321
Xkb-capable Client, glossary entry 219
XkbChangeControls() 78
XkbChangeDevicelnfo() 207
XkbChangeEnabledControls() 54
XkbChangelndicators() 44
XkbChangeMap() 121
XkbChangeNames() 183
XkbChangeTypesOfKey() 136
XkbClampintoRange 6974, 134
XkbClientMapRec 126
XkbColorRec 100
XkbCompatMapNotify 14173, 177
XkbCompatMapNotifyEvent 18177
XkbCompatMapRec 168
XkbComponentListRec 191
XkbComponentNameRec 191
XkbComponentNamesRec 191
XkbComputeRowBounds() 105
XkbComputeSectionBounds() 105
XkbComputeShapeBounds() 104
XkbComputeShapeTop() 104
XkbControlsChangesRec 78
XkbControlsNotify 14 62
XkbControlsNotifyEvent 1879
XkbControlsRec 72

allocating and freeing 80
XkbCopyKeyType() 131
XkbCopyKeyTypes() 132
XkbCtrlsAction data structure 153
XkbDescRec 27

component references 27
XkbDeviceBell() 49
XkbDeviceBellEvent() 50
XkbDeviceBtnAction data structure 157
XkbDeviceChangesRec 206
XkbDevicelnfoRec 198
XkbDeviceLedChangesRec 206
XkbDeviceLedInfoRec 198
XkbDeviceValuatorAction data structure 158
XkbDoodadRec 102
XkbEvent unified event type 18
XkbExtensionDeviceNotify 15204, 205, 207
XkbExtensionDeviceNotifyEvent 1806
XkbFindOverlayForKey() 105
XkbForceBell(') 51
XkbForceDeviceBell() 51
XkbFreeClientMap() 123
XkbFreeCompatMap() 178
XkbFreeComponentList() 191
XkbFreeControls() 80
XkbFreeDevicelnfo() 203
XkbFreeGeomColors() 111
XkbFreeGeomDoodads() 114
XkbFreeGeometry() 114
XkbFreeGeomKeyAliases() 110
XkbFreeGeomKeys() 109

February 5, 1996

Library Version 1.0/Document Revision 1.0 Index-7

The X Keyboard Extension

Index

XkbFreeGeomOutlines() 109
XkbFreeGeomOverlayKeys() 113
XkbFreeGeomOverlayRows() 113
XkbFreeGeomOverlays() 112
XkbFreeGeomPoints() 111
XkbFreeGeomProperties() 110
XkbFreeGeomRows() 112
XkbFreeGeomSections() 112
XkbFreeGeomShapes() 111
XkbFreelndicatorMaps() 46
XkbFreeKeyboard() 29
XkbFreeNames() 185
XkbFreeServerMap() 124
XKBgeom.h 6

XkbGeometryRec 100
XkbGetAccessXTimeout() 62
XkbGetAutoRepeatRate() 57
XkbGetAutoResetControls() 55
XkbGetBounceKeysDelay() 66
XkbGetCompatMap() 173
XkbGetControls() 76
XkbGetControlsChanges() 80
XkbGetDetectableAutorepeat() 58
XkbGetDeviceButtonActions() 200
XkbGetDevicelnfo() 199
XkbGetDevicelnfoChanges() 207
XkbGetDevicelLedInfo() 201
XkbGetGeometry() 103
XkbGetlIndicatorChanges() 45
XkbGetIndicatorMap() 40
XkbGetlIndicatorState() 40
XkbGetKeyActions() 159
XkbGetKeyBehaviors() 161
XkbGetKeyboard() 28196
XkbGetKeyboardByName() 193

XkbGetKeyExplicitComponents() 162

XkbGetKeyModifierMap() 138
XkbGetKeySyms() 136
XkbGetKeyTypes() 130
XkbGetKeyVirtualModMap() 165
XkbGetMap() 117
XkbGetNameChanges() 185
XkbGetNamedGeometry() 104
XkbGetNamedIindicator() 41
XkbGetNames() 182
XkbGetSlowKeysDelay() 66
XkbGetState() 24
XkbGetStickyKeysOptions() 68
XkbGetUpdatedMap() 118
XkbGetVirtualMods() 164
XkbGetXlibControls() 84
XkbGroupAction data structure 145
XkblgnoreExtension() 8
XkbIM_LEDDriveskB 35, 41
XkbIM_NoAutomatic 35 42
XkbIM_NoExplicit 35, 41
XkbIM_UseBase 3738
XkbIM_UseCompat 38
XkbIM_UseEffective 37 38
XkbIM_UseLatched 3738
XkbIM_UselLocked 37 38
XkbIM_UseNone 37 38
XkbIndicatorChangesRec 43
XkbIndicatorDoodadRec 103
XkbiIndicatorMapNotify 14 44

XkbIndicatorMapRec 35
XkbIndicatorNotifyEvent 18 44
XkblIndicatorRec 34
XkbIndicatorStateNotify 1444
XkblInitCanonicalKeyTypes() 130
XkbISOAction data structure 150
XkbKB_Default 160
XkbKB_Lock 161
XkbKB_Overlayl 161
XkbKB_Overlay2 161
XkbKB_Permanent 161
XkbKB_RadioGroup 161
XkbKeyAction macro 141
XkbKeyActionEntry macro 141
XkbKeyActionsPtr macro 141
XkbKeyAliasRec 100179
XkbKeycodeToKeysym() 88
XkbKeyGrouplnfo macro 134
XkbKeyGroupsWidth macro 135
XkbKeyGroupWidth macro 135
XkbKeyHasActions macro 140
XkbKeyNameRec 179
XkbKeyNumActions macro 140
XkbKeyNumGroups macro 134
XkbKeyNumSyms macro 135

XkbKeypadindex canonical key type 128

XkbKeyRec 101
XkbKeySymEntry macro 135
XkbKeySymsOffset macro 135
XkbKeySymsPtr macro 135
XkbKeysymToModifiers() 88
XkbKeyType macro 133
XkbKeyTypelndex macro 133
XkbKeyTypeRec 126

XkbKeyTypesForCoreSymbols() 175

XkbKTMapEntryRec 126
XkbLatchGroup() 23
XkbLatchModifiers() 22
XkbLC_AllControls 84
XkbLC_AlphanumericKeys 192
XkbLC_AlternateGroup 192

XkbLC_AlwaysConsumeShiftAndLock 84

XkbLC_BeepOnComposeFail 84
XkbLC_ComposeLED 84

XkbLC_ConsumeKeysOnComposeFail 84

XkbLC_ConsumeLookupMods 84
XkbLC_Default 192
XkbLC_ForceLatinlLookup 84
XkbLC_FunctionKeys 192
XkbLC_Hidden 192
XkbLC_IgnoreNewKeyboards 84
XkbLC_KeypadKeys 192
XkbLC_Modifierkeys 192
XkbLC_Partial 192

XKBlib.h 6

XkbLibraryVersion() 6
XkbListComponents() 190
XkbLockGroup() 23
XkbLockModifiers() 22
XkbLogoDoodadRec 103
XkbLookupKeyBinding() 89
XkbLookupKeySym() 88
XkbMapChangesRec 120
XkbMapNotify 14, 86, 87, 121, 177
XkbMapNotifyEvent 18 122

February 5, 1996

Library Version 1.0/Document Revision 1.0

Index-8

The X Keyboard Extension

Index

XkbMessageAction data structure 154
XkbModAction data structure 143
XkbModActionVMods macro 144
XkbNameChangesRec 183
XkbNamesNotify 14 184
XkbNamesNotifyEvent 18184
XkbNamesRec 179
XkbNewKeyboardNotify 14 86, 186
XkbNewKeyboardNotifyEvent 18187
XkbNoteControlsChanges() 79
XkbNoteDeviceChanges() 207
XkbNotelndicatorChanges() 45
XkbNoteNameChanges() 184
XkbOneLevellndex canonical key type 128
XkbOpenDisplay() 8

XkbOutlineRec 100
XkbOutOfRangeGroupinfo macro 134
XkbOutOfRangeGroupNumber macro 134
XkbOverlayKeyRec 101
XkbOverlayRec 101
XkbOverlayRowRec 101
XkbPointRec 100

XkbPropertyRec 100

XkbPtrAction data structure 146
XkbPtrActionX macro 147
XkbPtrActionY macro 147
XkbPtrBtnAction data structure 147
XkbPtrDfltAction data structure 149
XkbQueryExtension() 7
XkbRedirectintoRange 94, 134
XkbRedirectKeyAction data structure 155
XkbRefreshKeyboardMapping(') 89
XkbResizeDeviceButtonActions() 203
XkbResizeKeyActions() 159
XkbResizeKeySyms() 137
XkbResizeKeyType() 131
XkbRowRec 101

XkbSA ActionMessage 142154
XkbSA_AffectDfltBtn 148
XkbSA_ClearLocks 144145

XkbSA DeviceBtn 142157
XkbSA_DeviceValuator 142158
XkbSA_DfltBtnAbsolute 149
XkbSA_GroupAbsolute 145150
XkbSA_lgnoreVal 158
XkbSA_ISODfltIsGroup 150151
XkbSA ISODNoAffectMods 151
XkbSA_ISOLock 142 150
XkbSA_ISONoAffectCtrls 150151, 152
XkbSA_ISONoAffectGroup 150151, 152
XkbSA_ISONoAffectMods 150151
XkbSA_ISONoAffectPtr 150151, 152
XkbSA_LatchGroup 142145
XkbSA_LatchMods 142143

XkbSA_ LatchToLock 144145

XkbSA LockControls 142153
XKbSA_LockDeviceBtn 142
XKkbSA_LockDeviceBtn 157

XkbSA LockGroup 142145
XkbSA_LockMods 142 143
XkbSA_LockNoLock 144 148, 151, 153, 157

XkbSA_LockNoUnlock 144 148, 151, 153, 158

XkbSA_LockPtrBtn 142 148
XkbSA_ MessageGenKeyEvent 154
XkbSA MessageOnPress 154

XkbSA_MessageOnRelease 154
XkbSA MoveAbsoluteX 146
XkbSA_MoveAbsoluteY 147
XkbSA_MovePtr 142146

XkbSA NoAcceleration 146
XkbSA_NoAction 142
XKbSA_PtrBtn 142
XkbSA_PtrBtn 148
XkbSA_Redirectkey 142155
XkbSA_SetControls 142153
XkbSA_SetGroup 142145
XkbSA_SetMods 142143
XkbSA_SetPtrDflt 142148
XkbSA_SetValAbsolute 158
XkbSA_SetValCenter 158
XkbSA_SetValMax 158
XkbSA_SetValMin 158
XkbSA_SetValRelative 158
XkbSA SwitchAbsolute 152
XkbSA_SwitchApplication 152
XkbSA_SwitchScreen 142152
XkbSA_UseDfltButton 148
XkbSA_UseModMapMods 144151
XkbSAActionSetCtrls macro 154
XkbSAGroup macro 146
XkbSAPtrDfltValue macro 149
XkbSARedirectSetVMods macro 156
XkbSARedirectSetVYModsMask macro 156
XkbSARedirectVMods macro 156
XkbSARedirectVYModsMask macro 156
XkbSAScreen macro 152
XkbSASetGroup macro 146
XkbSASetPtrDfltValue macro 149
XkbSASetScreen macro 153
XkbSectionRec 102
XkbSelectEventDetails() 17
XkbSelectEvents mask constants 17
XkbSelectEvents() 16
XkbServerMapRec 140
XkbSetAccessXTimeout() 63
XkbSetAutoRepeatRate() 57
XkbSetAutoResetControls() 55
XkbSetBounceKeysDelay() 67
XkbSetCompatMap() 176
XkbSetControls() 77
XkbSetDebuggingFlags() 209
XkbSetDetectableAutorepeat() 58
XkbSetDeviceButtonActions() 205
XkbSetDevicelnfo() 204
XkbSetlgnoreLockMods() 70
XkbSetIndicatorMap() 42
XkbSetMap() 119
XkbSetModActionVMods macro 144
XkbSetNamedIndicator() 43
XkbSetNames() 182
XkbSetPtrActionX macro 147
XkbSetPtrActionY macro 147
XkbSetServerinternalMods() 71
XkbSetSlowKeysDelay() 66
XkbSetStickyKeysOptions() 68
XkbSetXlibControls() 84
XkbShapeDoodadRec 102
XkbShapeRec 100

XkbSI_AIIOf 171

XkbSI_AnyOf 171

February 5, 1996

Library Version 1.0/Document Revision 1.0

Index-9

The X Keyboard Extension

Index

XkbSI_AnyOfOrNone 171
XkbSI_Exactly 171
XkbSI_NoneOf 171
XkbStateNotify 14 24, 65
XkbStateNotify event detail masks 24
XkbStateNotifyEvent 1825
XkbStateRec 24
Xkbstr.h 6
XkbSwitchScreenAction data structure 152
XkbSyminterpretRec 171
XkbSymMapRec 132
XkbTextDoodadRec 103
XkbTranslateKeyCode(') 90
XkbTranslateKeySym() 89
XkbTwoLevellndex canonical key type 128
Xkb-unaware client 421
Xkb-unaware Client, glossary entry 219
XkbUpdateMapFromCore() 174
XkbUseCoreKbd 1015
XkbVirtualModsToReal() 32
XkbWraplntoRange 6974, 134
XkbXIDfItID 197
XkbXlibControlsimplemented() 84
XKeycodeToKeysym(), Xkb modifications 87
XKeysymToKeycode(), Xkb modifications 87
Xlib version required 1
XLookupKeysym(), Xkb modifications 87
XLookupString(') 81
function which is equivalent, XkbLookupKeyBinding() 89
Xkb modifications 87
XMappingNotify 186
XRebindKeysym(), Xkb modifications 88
XRefreshKeyboardMapping()
function which is equivalent, XkbRefreshKeyboardMap-
ping() 89
Xkb modifications 87

February 5, 1996 Library Version 1.0/Document Revision 1.0

Index-10

